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Abstract

In this paper we introduce the notion of bounded modules and fully
bounded modules. A right R-module M is called a bounded module if
every essential submodule of M contains a fully invariant submodule of
M which is essential in MR. A module M is called a fully bounded
module if M/X is bounded for any prime submodule X of M .

1. Introduction and Preliminaries

Throughout this paper, all rings are associative with identity, and all modules
are unitary right R-modules. We write MR (resp. RM) to indicate that M
is a right (resp. left) R-modules. We also write J(R) (resp. rad(M)) for the
Jacobson radical of R (resp. Jacobson radical of MR) and S = End(MR), its
endomorphism ring. A submodule X of M is called a fully invariant submodule

∗Correspoding author.
Key words: bounded modules, fully bounded module, Jacobson’s conjecture.
2010 AMS Mathematics Classification: 16D50,16D70,16D80.

95



96 On fully bounded Noetherian modules and their endomorphism rings

of M if for any f ∈ S, we have f(X) ⊂ X. Especially, a right ideal of R is a
fully invariant submodule of RR if it is a two-sided ideal of R. Following [16], a
fully invariant proper submodule X of M is called prime submodule of M if for
any ideal I of S and any fully invariant submodule U of M , if I(U) ⊂ X, then
either I(M) ⊂ X or U ⊂ X. In particular, an ideal P of R is a prime ideal if
for any ideals I, J of R, if IJ ⊂ P , then either I ⊂ P or J ⊂ P . A non-zero
submodule U of M is called essential in M if U has non-zero intersection with
any non-zero submodule of M . A right R-module M is called a self-generator if
it generates all its submodules. M is retractable if for any non-zero submodule
X of M, there is a non-zero ϕ ∈ S = End(M) such that ϕ(M) ⊂ X. Clearly,
every self-genarator is retractable. Note that, for a submodule X of M, if M
is retractable and Hom(M,X) = 0, then X = 0. General background materials
can be found in [1], [3], [4], [5], [6], [10], [11], [13], [18], [19].

2. Bounded and fully bounded modules

Definition 1.1 A right R-module M is called a bounded module if every
essential submodule contains a fully invariant submodule which is essential in
M as a submodule. A ring R is a right bounded if every essential right ideal
of R contains an ideal which is essential as a right ideal.

Clearly, every commutative ring is right bounded. A simple Artinian ring
which has no proper essential right ideals is right bounded.

Let X be a submodule of M . We denote IX = {f ∈ S|f(M) ⊂ X} . Clearly,
IX is a right ideal of S. If X is a fully invariant submodule of M , then IX is
an ideal of S. The following two properties will be useful.

Prposition 2.2 Let M be a quasi-projective finitely generated right R-module
which is retractable.IfX is an essential submodule of M , then IX is an essential
right ideal of S = EndR(M).

The proof is similar to ([14], Lemma 3.6) with notice that if M is retractable
and Hom(M,X) = 0, then X = 0.

Proposition 2.3 Let M be a quasi-projective, finitely generated right R-module
which is retractable. If K is an essential right ideal of S, then K(M) is an
essential submodule of M .

Proof. Suppose that K(M) ∩ B = 0 with B is a submodule of M . Then
we have Hom(M,K(M) ∩B) = Hom(M,K(M)) ∩Hom(M,B) = 0. By ([19,
18.4]) we haveK = Hom(M,K(M)). SinceM is retractable andHom(M,B) =
0, we can see that B = 0. Hence K(M) is an essential submodule of M . �
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From above propositions, we have the following theorem.

Theorem 2.4 Let MR be a quasi-projective, finitely generated right R-module
which is retractable. Then, MR is a bounded module if and only if its endo-
morphism ring S = End(MR) is a right bounded ring.

Proof. Suppose that M is a bounded module. Let I be an essential right ideal
of S. Then I(M) is essential submodule of M . By assumption, I(M) contains
a fully invariant submodule B of M which is essential in M . By Proposition
2.2 the ideal IB is an essential right ideal of S. Note that IB ⊂ II(M) = I by
[19, 18.4] and thus S is a right bounded ring.

Conversely, assume that S is a right bounded ring. Let X be an essential
submodule of M . By proposition 2.2, IX is an essential right ideal of S. By
hypothesis, there exists a two sided ideal K of S contained in IX which is
essential in S as a right ideal. Note that K(M) is fully invariant submodule of
M . By proposition 2.3, K(M) is an essential submodule of MR, proving that
M is a bounded module. �

Lemma 2.5 ([19, 17.3]) Let K,M,N be R-modules. If f : M → N is a
homomorphism and K is an essential submodule of N , then f−1(K) is an
essential submodule of M .

Theorem 2.6 If M is a bounded module, then so is Mn for any n ∈ N.

Proof. Suppose that M is a bounded module and X is any essential sub-
module of Mn. Write Mn = ⊕n

i=1Mi, where Mi = M for each i = 1, 2, ..., n.
Then X ∩Mi is essential in Mi for each i = 1, 2, ..., n. By assumption, X ∩Mi

contains a fully invariant submodule Ai of Mi such that Ai is essential in
Mi = M , i = 1, 2, ..., n. Put B =

⋂n
i=1 Ai. Then B is a fully invariant

submodule of Mi (i = 1, 2, ..., n). Hence Bn = ⊕n
i=1Bi, Bi = B, is essen-

tial in Mn. It remains to prove that Bn is a fully invariant submodule of
Mn. Let ϕ ∈ End(Mn). Then ϕ = (ϕij), ϕij : Mj → Mi = M with
ϕij = πiϕιj ∈ End(M), where ιj : Mj → Mn, πi : Mn → Mi are inclu-
sion and projection maps. Take any x = (b1, ..., bn) ∈ Bn = ⊕n

i=1Bi. Then
x =

∑n
j=1 ιj(bj) and therefore ϕ(x) =

∑n
i=1 ϕιj(bj) =

∑n
i=1 ιiπi(

∑
ϕιj(bj)).

Thus ϕ(x) =
∑n

i=1 ιi[
∑n

i=1 πiϕιj(bj)] =
∑n

i=1 ιi[
∑n

i=1 ϕij(bj)], where bj ∈
Bj = B and hence ϕij(bj) ∈ Bi = B. Therefore

∑
ϕij(bj) ∈ Bi ⊂ Mi. Hence∑n

i=1 ιi[
∑n

i=1 ϕij(bj)] ∈ Bn, proving that Bn is a fully invariant submodule of
Mn. �

Let Matn(R) be the ring of all square matrices of order n with coefficients
in R. The following corollary is an immediate consequence.

Corollary 2.7 If R is a right bounded ring, then Rn is a bounded R-module
and hence Matn(R) is a right bounded ring.
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Lemma 2.8 ([16], Theorem 2.4) Let M be a right R-module. If M is a prime
R-module, then its endomorphism ring S is a prime ring. Conversely, if M is
a self-generator and S is a prime ring, then M is a prime module.

It was showed in [6] that a prime ring R is right bounded if and only if
every essential right ideal of R contains a non-zero ideal. Using this result, we
have the following theorem.

Theorem 2.9 Let M be a quasi-projective, finitely generated right R-module
which is retractable. If M is a prime module, then M is a bounded module if
and only if every essential submodule of M contains a non-zero fully invariant
submodule of M .

Proof. One way is clear by definition. Conversely, let I be an essential
right ideal of S. Then I(M) is an essential submodule of M . By assumption,
I(M) contains a fully invariant submodule B of M. Since I(M) is an essential
submodule of M and 0 �= B ⊂> I(M). By 2.3, IB ⊂ II(M) = I and IB is an
ideal of S. Since M is a prime module,it follows that S is a prime ring, by
Lemma 2.8. Therefore, S is a right bounded ring. It follows from Theorem 2.4
that M is a bounded module. �

Recall that a ring R is right fully bounded if for every prime ideal I of
R, the prime factor ring R/I is a right bounded ring. We now introduce the
concept of fully bounded modules as a generalization of fully bounded rings.

Definition 2.10 A right R-module MR is fully bounded if for every prime
submodule X of M , the factor module M/X is a bounded module. A ring R
is right fully bounded if for every prime ideal I of R, the factor ring R/I is a
right bounded ring.

We now examine the relationship between a fully bounded module M and
its endomorphism ring S. First we need the following lemmas, the proofs which
are straightforward.

Lemma 2.11 Let X be a fully invariant submodule of M , ϕ = End(M). Then
there is a unique ϕ̄ = End(M/X) such that ϕ̄ν = νϕ, where ν : M →M/X is
the natural projection.

Lemma 2.12 Let X be a submodule of a quasi-projective module M , ψ ∈
End(M/X). There is a ϕ ∈ End(M) such that ψν = νϕ where ν : M →
M/X.

Lemma 2.13 Let M be a quasi-projective right R-module and X, a fully
invariant submodule of M . Then End(M/X) � S/IX , where S = End(M)
and IX = {ϕ|ϕ(M) ⊂ X}.
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Proof. Let ϕ ∈ S and ϕ̄ ∈ S̄ = End(M/X) as defined in Lemma 2.11 and
2.12. Define the map Φ : End(M/X) → S/IX given by ϕ̄ 	→ ϕ+IX . Clearly, Φ
is well-defined. Note that for ψ, ϕ ∈ S, we have ϕ̄+ψ̄ = ϕ+ ψ and ϕ̄·ψ̄ = ϕ · ψ.
Using these facts we can check that Φ is a ring homomorphism. Moreover, it
can be seen that Φ is 1-1 and onto, proving that Φ is a ring isomorphism. �

Lemma 2.14 Let X be a fully inveriant sub module of M.

(1) If M is quasi-projective, then so is M/X.

(2) If M is retractable, then so is M/X.

(3) If M is a self-generator, then so is M/X.

Proof.
(1) Let g : M/X → N be any R-epimorphism and h : M/X → N . Then gν

is an R-epimorphism. Since M is quasi-projective, there exists ϕ ∈ End(M)
such that (gν)ϕ = hν . Since X is fully invariant, there is a unique ϕ̄ ∈
End(M/X) such that ϕ̄ν = νϕ. Hence hν = gνϕ = gϕ̄ν . It follows that
h = gϕ̄, proving that M/X is quasi-projective.

(2) Let B be any submodule of M/X. Then B is of the form A/X for some
submodule A of M .

If M is retractable, then there is ϕ ∈ S such that ϕ(M) ⊂ A. Since
ϕ(M)/X � ϕ(M/X), we get ϕ(M/X) ⊂ B, proving that M/X is retractable.

(3) If M is a self-generator, A = Σϕ∈Iϕ(M) for some subset I of S. Apply-
ing Lemma 2.11 and 2.12, ϕ(M)/X � ϕ̄(M/X) and hence B = Σϕ∈I ϕ̄(M/X),
proving that M/X is a self-generator. �

Lemma 2.15 ([16], Theorem 1.10) Let M be a right R-module, S = End(MR)
and X, a fully invariant submodule of M . If X is a prime submodule of M ,
then IX is a prime ideal of S. Conversely, if M is a self-generator and if IX
is a prime ideal of S, then X is a prime submodule of M .

Theorem 2.16 Let M be a quasi-projective, finitely generated right R-module
which is self-generator. Then M is a fully bounded module if and only if S is
a right fully bounded ring.

Proof. Let I be any prime ideal of S. Then X = I(M) is a fully invariant
submodule of M . Note that I = Hom(M, I(M)) by [20, 18.4] and hence
X �= M and IX = Hom(M, IX(M)) = Hom(M,X) = Hom(M, I(M)) = I.
This shows that X is a prime submodule of M by Lemma 2.14. By assumption,
M/X is a bounded module. It follows from Theorem 2.4 that End(M/X) is
a right bounded ring. By Lemma 2.13, S/I = S/IX � End(M/X) is a right
bounded ring, proving that S is a right fully bounded ring.

Conversely, let X be a prime submodule of M . Then IX is a prime ideal of
S by Lemma 2.15. By assumption, S/IX is a right bounded ring. Hence M/X
is a bounded module, by Lemma 2.13. This shows that M is a fully bounded
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module and the proof of our Theorem is complete. �

Theorem 2.17 Let M be a quasi-projective, finitely generated right R-module.
If M is a Noetherian module, then S is a right Noetherian ring.

Proof. Suppose that we have ascending chain of right ideals of S, I1 ⊂ I2 ⊂
· · · . Then we have I1(M) ⊂ I2(M) ⊂ · · · is an ascending chain of submodules
of M . By assumption, there exists an integer n such that In(M) = Ik(M), for
all k > n. By ([19, 18.4]), we have In = Hom(M ; In(M)) = Hom(M ; Ik(M)) =
Ik. Thus S is a right Noetherian ring. �

A right fully bounded ring needs not be right bounded. However, if R is
a right fully bounded right Noetherian ring, it can be shown that R is right
bounded (see [3, Proposition 7.12]). Applying this Proposition, we can gener-
alize the result to modules as follows.

Theorem 2.18 Let M be a quasi-projective, finitely generated right R-module
which is a self-generator. If MR is a Noetherian fully bounded module, then
MR is a bounded module.

Proof. SinceMR is a Noetherian fully bounded module, S is a right Noetherian
right fully bounded ring, by theorem 2.16 and 2.17. By [3, Proposition 7.12],
S is a right bounded ring. By Theorem 2.4, we can see that MR is a bounded
module, completing our proof. �

Following [6], if R is a right Noetherian right fully bounded ring, then every
factor ring of R is right bounded. Combining this result and Lemma 2.14, we
can prove the following theorem.

Theorem 2.19 Let M be a quasi-projective, finitely generated right R-module
which is a self-generator. If M is a fully bounded Noetherian module and X is
a fully invariant submodule of M , then M/X is a bounded module.

Proof. Since M is a right Noetherian right fully bounded module, the
endomorphism ring S is right Noetherian, right fully bounded by Theorem
2.16 and 2.17. Let X be a fully invariant submodule of M . Then S/IX is
a right bounded ring by [6]. Let B/X be any essential submodule of M/X.
Then by Lemma 2.13 and 2.14, IB/IX is an essential right ideal of S/IX . Since
S/IX is a right bounded ring, IB/IX contains an essential ideal H/IX of S/IX .
Therefore H(M)/X is a fully invariant essential submodule of M/X, proving
that factor module M/X is a bounded module. �

The following corollary is a direct consequence of the above theorem.

Corollary 2.20 Let M be a quasi-projective, finitely generated right R-module
which is a self-generator and f : M → N be an epimorphism. If Kerf is a
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fully invariant submodule of M and if M is a fully bounded Noetherian module,
then N is a Noetherian bounded module.
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