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Abstract

Relational hypersubstitutions for algebraic systems are mappings which
map operation symbols to terms and map relation symbols to relational
terms preserving arities. The set of all relational hypersubstitutions for
algebraic systems (Relhyp(τ, τ ′)) together with a binary operation de-
fined on this set forms a monoid. In this paper, we determine all maximal
unit-regular submonoids of this monoid of type ((2), (2)).

Introduction

In universal algebra, identities are used to classify algebras into collections
called varieties and hyperidentities are used to classify varieties into collections
called hypervarieties[9]. The tool which is used to study hyperidentities and
hypervarieties is the concept of a hypersubstitution. The notation of hypersub-
stitutions was introduced by K. Denecke et al. [2]. To recall the concept of a
hypersubstitution of type τ , we recall first the concept of an m-ary term of type
τ . Let (fi)i∈I be a set of mi-ary operation symbols indexed by the set I where
mi ∈ N+ := N \ {0}. The set X := {x1, . . . , xn, . . .} is a countably infinite set
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of symbols called variables. For each m ≥ 1, let Xm := {x1, . . . , xm}. We call
the sequence τ := (mi)i∈I of arities of fi, the type. An m-ary term of type τ
is defined inductively as the following steps.

(i) Every variable xk ∈ Xm is an m-ary term of type τ .

(ii) If t1, . . . , tmi
are m-ary terms of type τ and fi is an mi-ary operation

symbol, then fi(t1, . . . , tmi
) is an m-ary term of type τ .

Let Wτ (Xm) be the set of all m-ary terms of type τ which contains x1, . . . , xm
and is closed under finite application of (ii) and let Wτ (X) :=

⋃
m∈N+ Wτ (Xm)

be the set of all terms of type τ .
Arity is the number of arguments or operands taken by a function or

operation and τ = (mi)i∈I be a type. A hypersubstitution of type τ is a
mapping σ : {fi|i ∈ I} → Wτ (X) preserving the arity. Let Hyp(τ) be
the set of all hypersubstitutions of type τ . To define a binary operation
on this set, we define inductively the concept of a superposition of terms
Smn : Wτ (Xm)× (Wτ (Xn))m →Wτ (Xn) by the following steps.

(i) If t = xk for 1 ≤ k ≤ m, then Smn (xk, s1, . . . , sm) := sk.

(ii) If t = fi(t1, . . . , tmi
), then

Smn (t, s1, . . . , sm) := fi(S
m
n (t1, s1, . . . , sm), . . . , Smn (tmi , s1, . . . , sm)).

For every σ ∈ Hyp(τ), we define a mapping σ̂ : Wτ (Xm)→Wτ (Xm) as follows:

(i) σ̂[xk] := xk ∈ Xm,

(ii) σ̂[fi(t1 . . . , tmi)] := Smi
m (σ(fi), σ̂[t1], . . . , σ̂[tmi ]), for any mi-ary operation

symbol fi and σ̂[tj ] are already defined for all 1 ≤ j ≤ mi.

Further, a binary operation ◦h on the set Hyp(τ) is defined by σ ◦h α = σ̂ ◦ α,
where ◦ denotes the usual composition of mappings. Then one can prove that
(Hyp(τ), ◦h, σid) is a monoid, where σid(fi) = fi(x1, x2, ..., xmi

) is the identity
element, for more detail, see [2].

In 1973, Mal’cev[5] introduced the concept of algebraic systems as follow.

Definition 1. [5] Let I and J be indexed sets. An algebraic system of type
(τ, τ

′
) is a triple (A, (fAi )i∈I , (γ

A
j )j∈J) consisting of a nonempty set A, a se-

quence (fAi )i∈I of operations defined on A and a sequence (γAj )j∈J of relations

on A, where τ = (mi)i∈I is a sequence of the arity of each operation fAi and

τ
′

= (nj)j∈J is a sequence of the arity of each relation γAj . The pair (τ, τ
′
) is

called the type of an algebraic system.

In 2008, K. Denecke and D. Phusanga introduced the concept of a hyper-
substitution for algebraic systems which is a mapping that assigns an operation
symbol to a term and assigns a relation symbol to a formula which preserve
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the arity. The set of all hypersubstitutions for algebraic systems of type (τ, τ
′
)

is denoted by Hyp(τ, τ
′
). They defined an associative operation ◦h on this set

and proved that (Hyp(τ, τ
′
), ◦h, σid) forms a monoid where σid is an identity

hypersubstitution for algebraic systems, see more detail [3, 6, 8].

The monoid of relational hypersubstitutions for
algebraic systems

Any relational hypersubstitution for algebraic systems is a mapping that
assigns an operation symbol to a term and assigns a relation symbol to a
relational term which preseves the arity.

Definition 2. [6] An n−ary quantifier free formular of type (τ, τ
′
) is defined

as follow. Let j be an indexed set. If j ∈ J and t1, t2, ..., tnj
are n−ary terms of

type τ and γj is an nj−ary relation symbol, then γj(t1, t2, ..., tnj
) is an n−ary

relational term of type (τ, τ
′
).

Let γF(τ,τ ′ )(Xn) be the set of all n−ary relational term of type (τ, τ
′
) and

let γF(τ,τ ′ )(X) := ∪n∈NγF(τ,τ ′ )(Xn) be the set of all relational terms of type

(τ, τ
′
).

A relational hypersubstitution for algebraic systems of type (τ, τ
′
) is a map-

ping

σ : {fi| i ∈ I} ∪ {γj | j ∈ J} →Wτ (X) ∪ γF(τ, τ
′
)(X)

with σ(fi) ∈ Wτ (Xni
) and σ(γj) ∈ γF(τ,τ ′ )(Xnj

). The set of all relational hy-

persubstitutions for algebraic systems of type (τ, τ
′
) is denoted byRelhyp(τ, τ

′
).

To defined a binary operation on this set, we give the concept of superposi-
tion of relational terms. A superposition of relational terms Rmn : (Wτ (X) ∪
γF(τ,τ ′ )(Xm))× (Wτ (Xn))m →Wτ (X)∪γF(τ,τ ′ )(Xm) is defined by the follow-

ing steps, for t, t1, . . . , tmi ∈Wτ (Xm), s1, . . . , sm ∈Wτ (Xn),

(i) Rmn (t, s1, . . . , sm) := Smn (t, s1, . . . , sm),

(ii) Rmn (F, s1, . . . , sm) := γj(S
m
n (t1, s1, . . . , sm), . . . , Smn (tnj , s1, . . . , sm)).

Every relational hypersubstitution for algebraic systems σ can be extended
to a mapping σ̂ : Wτ (X)∪ γF(τ,τ ′ )(X)→Wτ (X)∪ γF(τ,τ ′ )(X) defined by the
following steps.

(i) σ̂[xi] := xi ∈ X,

(ii) σ̂[fi(t1 . . . , tmi
)] := Smi

m (σ(fi), σ̂[t1], . . . , σ̂[tmi
]),

where i ∈ I and t1, . . . , tmi ∈Wτ (Xm), i.e., any occurrence of the variable
xk in σ(fi) is replaced by the term σ̂[tk], 1 ≤ k ≤ mi,
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(iii) σ̂[γj(s1 . . . , snj
)] := R

nj
n (σ(γj), σ̂[s1], . . . , σ̂[snj

]), where j ∈ J and s1, . . . , snj

∈Wτ (Xn), i.e., any occurrence of the variable xk in σ(γj) is replaced by
the term σ̂[sk], 1 ≤ k ≤ nj .

They defined a binary operation ◦r on Relhyp(τ, τ
′
) by σ ◦r α := σ̂ ◦ α; for

all α, σ ∈ Relhyp(τ, τ ′) where ”◦” is the usual composition of mappings and
σ, α ∈ Relhyp(τ, τ ′

). Let σid be the relational hypersubstitution which maps
each mi-ary operation symbol fi to the term fi(x1, . . . , xmi) and maps each
nj−ary relation symbol γj to the relational term γj(x1, . . . , xnj ). D. Phusanga

and J. Koppitz [6] proved that (Relhyp(τ, τ
′
), ◦r, σid) is a monoid.

In 2015, W. Wongpinit and S. Leeratanavalee [?] introduced the concept of
the i−most of terms.

Definition 3. For a type τ = (m) with an m-ary operation symbol f , t ∈
W(m)(X) and 1 ≤ i ≤ m. An i−most(t) is defined inductively by the following
steps.

(i) If t is a variable, then i−most(t) = t.
(ii) If t = f(t1, . . . , tn) where t1, . . . , tn ∈ W(m)(X), then i − most(t) :=

i−most(ti).

Example 1. Let τ = (3) be a type, t = f(x2, f(x3, x1, x2), f(x2, x1, x3)). Then
1−most(t) = x2, 2−most(t) = 2−most(f(x3, x1, x2)) = x1 and 3−most(t) =
3−most(f(x2, x1, x3)) = x3.

Main Results

Let (τ, τ
′
) = ((m), (n)) be a type with an m−ary operation symbol f , an n−ary

relation symbol γ, t ∈W(m)(Xm) and F ∈ γF((m),(n))(Xn), we denote
σt,F := the relational hypersubstitution for algebraic systems of type ((m), (n))

with maps f to the term t ∈ W(m)(Xm) and maps γ to the relational term
F ∈ γF((m),(n))(Xn),

var(t):= the set of all variables occurring in the term t,
var(F ):= the set of all variables occurring in the relational term F ,
leftmost(t):= the first variable (from the left) occurring in the term t,
rightmost(t):= the last variable (from the left) occurring in the term t,
leftmost(F ):= the first variable (from the left) occurring in the relational

term F ,
rightmost(F ):= the last variable (from the left) occurring in the relational

term F .
Let σt,F ∈ Relhyp((m), (n)), we denote

R′X := {σt,F |t = xi ∈ Xm and F = γ(s1, ..., sn) with var(F ) = {xb1 , ..., xbl}
⊆ Xn such that i−most(sb′k) = xbk for all k = 1, ..., l and some distinct b

′

1, ..., b
′

l

∈ {1, ..., n} where i ∈ {1, ...,m}};
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RT := {σt,F | t = f(t1, . . . , tm) and F = γ(s1, ..., sn) with var(t) =
{xa1 , ..., xak}
and var(F ) = {xb1 , ..., xbl} such that ta′i = xai and sb′j = xbj for all i =

1, ..., k, j = 1, ..., l for some distincta
′

1, ..., a
′

k ∈ {1, ...,m} and for some distinct

b
′

1, ..., b
′

l ∈ {1, ..., n}}.
In [4], the authors showed that R′X ∪ RT is the set of all unit-regular ele-

ments in Relhyp((m), (n)).

All Maximal Unit-Regular Submonoids of Relhyp((2), (2))

Let (τ, τ
′
) = ((2), (2)) be a type with a biary operation symbol f , a bi-

nary relation symbol γ, t ∈ W(2)(X2) and F ∈ γF((2),(2))(X2). Let σt,F ∈
Relhyp((2), (2)), we denote

R′X := {σt,F |t = xi ∈ X2 and F = γ(s1, s2) with var(F ) ⊆ X2 such that i−
most(sb′k

) = xbk for all i, k = 1, 2 and some distinct b
′

1, b
′

2 ∈ {1, 2}};
RT := {σt,F | t = f(t1, t2) and F = γ(s1, s2) with var(t) ⊆ X2 and var(F ) ⊆

X2 such that ta′i = xai and sb′j = xbj for all i, j = 1, 2 for some distinct a
′

1, a
′

2 ∈
{1, 2} and for some distinct b

′

1, b
′

2 ∈ {1, 2}}.
It is easily to see that R′X , RT are pairwise disjoint but R′X , RT need not

be submonoids of Relhyp((2), (2)) as the following example.

Example 2. Let σt,F , σu,H ∈ R′X such that t = x1, F = γ(f(x2, x2), f(x1, x1))
and u = x2, H = γ(f(x1, x2), f(x2, x1)). Consider

(σt,F ◦r σu,H)(f) = σ̂x1,F [x2] = x2,

and

(σt,F ◦r σu,H)(γ) = R2
2(F, σ̂x1,F [h1], σ̂x1,F [h2]) = R2

2(F, x1, x2)

= γ(f(x2, x2), f(x1, x2)).

So σt,F ◦r σu,H /∈ R′X .

Example 3. Let σt,F , σu,H ∈ RT such that t = f(f(x1, x1), x1), F = γ(f(x2, x2), x2)
and u = f(f(x2, x2), x2), H = γ(x1, f(x1, x1)). Consider

(σt,F ◦r σu,H)(f) = S2
2(t, σ̂t,F [u1], σ̂t,F [x2])

= S2
2(t, f(f(x2, x2), x2), x2)

= f(f(f(f(x2, x2), x2), f(f(x2, x2), x2)), f(f(x2, x2), x2)).

So σt,F ◦r σu,H /∈ RT .

Next, let σt,F ∈ Relhyp((2), (2)), we denote
R′xi

:= {σt,F |t = xi ∈ X2, F = γ(s1, s2) where var(F ) ⊆ X2 such that i−
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most(sb′k
) = xbk for all i, k = 1, 2 and some distinct b

′

1, b
′

2 ∈ {1, 2}};
R′′xi

:= {σt,F |t = xi ∈ X2, F = γ(s1, s2) where var(F ) = {x1, x2} such that i−
most(sb′k

) = xbk for all i, k = 1, 2 and some distinct b
′

1, b
′

2 ∈ {1, 2} with if i =

1, then rightmost(s1) 6= rightmost(s2), if i = 2, then leftmost(s1) 6= leftmost(s2)};
R′′′xi

:= {σt,F |t = xi ∈ X2, F = γ(s1, s2) where |var(F )| = 1};
RT1 := {σt,F | t = f(x1, x2), F = γ(s1, s2) where var(F ) ⊆ X2 such that sb′j =

xbj for all j = 1, 2 and for some distinct b
′

1, b
′

2 ∈ {1, 2}};
RT2

:= {σt,F | t = f(x2, x1), F = γ(s1, s2) where var(F ) ⊆ X2 such that sb′j =

xbj for all j = 1, 2 and for some distinct b
′

1, b
′

2 ∈ {1, 2}};
RT3

:= {σt,F | t = f(x1, t2), F = γ(x1, s2) where |var(t)| = 1 and var(F ) ⊆
X2 such that sb′j = xbj for all j = 1, 2 and for some distinct b

′

1, b
′

2 ∈ {1, 2}};
RT4 := {σt,F | t = f(t1, x2), F = γ(s1, x2) where |var(t)| = 1 and var(F ) ⊆

X2 such that sb′j = xbj for all j = 1, 2 and for some distinct b
′

1, b
′

2 ∈ {1, 2}};
RT5

:= {σt,F | t = f(t1, x1), F = γ(s1, x1) where |var(t)| = 1 and var(F ) ⊆
X2 such that sb′j = xbj for all j = 1, 2 and for some distinct b

′

1, b
′

2 ∈ {1, 2}};
RT6

:= {σt,F | t = f(x2, t2), F = γ(x2, s2) where |var(t)| = 1 and var(F ) ⊆
X2 such that sb′j = xbj for all j = 1, 2 and for some distinct b

′

1, b
′

2 ∈ {1, 2}}.
It is easily to see that RTi for i ∈ {1, ..., 6} are pairwise disjoint but RTi

need not be a submonoid of Relhyp((2), (2)) as the following example.

Example 4. Let σt,F , σu,H ∈ RT5 such that t = f(f(x1, x1), x1), F = γ(x1, f(x1, x1))
and u = f(f(x1, x1), x1), H = γ(f(x2, x2), x2). Then

(σt,F ◦r σu,H)(f) = S2
2(t, σ̂t,F [u1], σ̂t,F [x2])

= S2
2(t, f(f(x1, x1), x1), x1)

= f(f(f(f(x1, x1), x1), f(f(x1, x1), x1)), f(f(x1, x1), x1)), and

(σt,F ◦r σu,H)(γ) = R2
2(F, σ̂t,F [h1], σ̂t,F [h2])

= S2
2(t, f(f(x2, x2), x2), x2)

= γ(f(f(f(x2, x2), x2), f(f(x2, x2), x2)), f(f(x2, x2), x2)).

So σt,F ◦r σu,H /∈ RT5 . If F,H are another case, we can show similar to the
previous solution.

By Example 4., we get that RT5 , RT6 are not closed into itself. Next, let
σt,F ∈ Relhyp((2), (2)), we denote

R∗Ti
:= {σt,F | t = f(t1, t2), F = γ(s1, s2) where ti = xi, si = xi; i =

1, 2 or ti, si ∈ X2 such that |var(t)| = 1 and var(t) = var(F )};
R′T2

:= {σt,F | t = f(x2, x1), F = γ(x2, x1)};
R′T3

:= {σt,F | t = f(x1, t2), F = γ(x1, s2) where |var(t)| = 1, |var(F )| =
1 such that t2, s2 ∈W(2)(X2)\X2};
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R′T4
:= {σt,F | t = f(t1, x2), F = γ(s1, x2) where |var(t)| = 1, |var(F )| =

1 such that t1, s1 ∈W(2)(X2)\X2}.

We denote (MUR1) := R′′xi
∪R′′′xi

∪R∗Ti
∪R′T2

, (MUR2) := R′x1
∪R′′′xi

∪R∗T1
∪

R′T3
, (MUR3) := R′x2

∪ R′′′xi
∪ R∗T1

∪ R′T3
, (MUR4) := R′x1

∪ R′′′xi
∪ R∗T2

∪ R′T4

and (MUR5) := R′x2
∪R′′′xi

∪R∗T2
∪R′T4

.

Proposition 1. R′′xi
∪R′′′xi

∪R∗Ti
is a submonoid of Relhyp((2), (2)).

Proof. We show that R′′xi
∪R′′′xi

∪R∗Ti
is closed under ◦r.

Case 1: σt,F ∈ R′′xi
. Then t = xi ∈ X2, F = γ(s1, s2) where var(F ) =

{x1, x2} such that i−most(sb′k) = xbk for all i, k = 1, 2 and some distinct b
′

1, b
′

2 ∈
{1, 2} with if i = 1, then rightmost(s1) 6= rightmost(s2), if i = 2, then leftmost(s1)
6= leftmost(s2).

Case 1.1: σu,H ∈ R′′xi
. Consider

(σt,F ◦r σu,H)(f) = σ̂t,F [xi] = xi, and

(σt,F ◦r σu,H)(γ) = R2
2(F, σ̂xi,F [h1], σ̂xi,F [h2])

= γ(S2
2(s1, i−most(h1), i−most(h2)),

S2
2(s2, i−most(h1), i−most(h2)))

= γ(s′1, s
′
2) where var(γ(s′1, s

′
2)) = {xi1 , xi2} such that

i−most(s′i′k) = xik ; i, k = 1, 2.

Case 1.2: σu,H ∈ R′′′xi
. Then u = xi ∈ X2, H = γ(h1, h2) where |var(H)| =

1. Consider

(σt,F ◦r σu,H)(f) = σ̂t,F [xi] = xi, and

(σt,F ◦r σu,H)(γ) = R2
2(F, σ̂xi,F [h1], σ̂xi,F [h2])

= γ(S2
2(s1, i−most(h1), i−most(h2)),

S2
2(s2, i−most(h1), i−most(h2)))

= γ(s′1, s
′
2) where |var(γ(s′1, s

′
2))| = 1.

Case 1.3: σu,H ∈ R′Ti
. Then u = f(u1, u2), H = γ(h1, h2) where ui, hi ∈

X2 such that |var(u)| = 1 and var(u) = var(H). Consider

(σt,F ◦r σu,H)(f) = σ̂xi,F [f(u1, u2)] = xj , and

(σt,F ◦r σu,H)(γ) = R2
2(F, σ̂xi,F [xj ], σ̂xi,F [xj ])

= γ(s′1, s
′
2) where var(γ(s′1, s

′
2)) = {xj}; j = 1, 2.
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Case 2: σt,F ∈ R′′′xi
. Then t = xi ∈ X2, F = γ(s1, s2) where |var(F )| = 1.

Case 2.1: σu,H ∈ R′′xi
. Then u = xi ∈ X2, H = γ(h1, h2) where var(H) =

{x1, x2} such that i−most(hb′k) = xbk for all i, k = 1, 2 and some distinct b
′

1, b
′

2 ∈
{1, 2} with if i = 1, then rightmost(h1) 6= rightmost(h2), if i = 2, then leftmost(h1)
6= leftmost(h2). Consider

(σt,F ◦r σu,H)(f) = σ̂t,F [xi] = xi, and

(σt,F ◦r σu,H)(γ) = R2
2(F, σ̂xi,F [h1], σ̂xi,F [h2])

= γ(S2
2(s1, i−most(h1), i−most(h2)),

S2
2(s2, i−most(h1), i−most(h2)))

= γ(s′1, s
′
2) where |var(γ(s′1, s

′
2))| = 1.

Case 2.2: σu,H ∈ R′′′xi
. Consider

(σt,F ◦r σu,H)(f) = σ̂t,F [xi] = xi, and

(σt,F ◦r σu,H)(γ) = R2
2(F, σ̂xi,F [h1], σ̂xi,F [h2])

= γ(S2
2(s1, i−most(h1), i−most(h2)),

S2
2(s2, i−most(h1), i−most(h2)))

= γ(s′1, s
′
2) where |var(γ(s′1, s

′
2))| = 1.

Case 2.3: σu,H ∈ R∗Ti
. Then u = f(u1, u2), H = γ(h1, h2) where ui, hi ∈

X2 such that |var(u)| = 1 and var(u) = var(H). Consider

(σt,F ◦r σu,H)(f) = σ̂xi,F [f(u1, u2)] = xj , and

(σt,F ◦r σu,H)(γ) = R2
2(F, σ̂xi,F [xj ], σ̂xi,F [xj ])

= γ(s′1, s
′
2) where var(γ(s′1, s

′
2)) = {xj}; j = 1, 2.

Case 3: σt,F ∈ R∗Ti
. Then t = f(t1, t2), F = γ(s1, s2) where ti, si ∈

X2 such that
|var(t)| = 1 and var(t) = var(F ).

Case 3.1: σu,H ∈ R′′xi
. Then u = xi ∈ X2, H = γ(h1, h2) where var(H) =

{x1, x2} such that i−most(hb′k) = xbk for all i, k = 1, 2 and some distinct b
′

1, b
′

2 ∈
{1, 2} with if i = 1, then rightmost(h1) 6= rightmost(h2), if i = 2, then leftmost(h1)
6= leftmost(h2). Consider

(σt,F ◦r σu,H)(f) = σ̂t,F [xi] = xi, and
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(σt,F ◦r σu,H)(γ) = R2
2(F, σ̂t,F [h1], σ̂t,F [h2])

= γ(S2
2(s1, σ̂t,F [h1], σ̂t,F [h2]), S2

2(s2, σ̂t,F [h1], σ̂t,F [h2]))

= γ(s′1, s
′
2) where |var(γ(s′1, s

′
2))| = 1.

Case 3.2: σu,H ∈ R′′′xi
. Then u = xi ∈ X2, H = γ(h1, h2) where |var(H)| =

1. Consider

(σt,F ◦r σu,H)(f) = σ̂t,F [xi] = xi, and

(σt,F ◦r σu,H)(γ) = R2
2(F, σ̂t,F [h1], σ̂t,F [h2])

= γ(S2
2(s1, σ̂t,F [h1], σ̂t,F [h2]), S2

2(s2, σ̂t,F [h1], σ̂t,F [h2]))

= γ(s′1, s
′
2) where |var(γ(s′1, s

′
2))| = 1.

Case 3.3: σu,H ∈ R∗Ti
. Then u = f(u1, u2), H = γ(h1, h2) where ui, hi ∈

X2 such that |var(u)| = 1 and var(u) = var(H). Consider

(σt,F ◦r σu,H)(f) = σ̂t,F [f(u1, u2)]

= f(t′1, t
′
2) where var(γ(t′1, t

′
2)) = {xj}; j = 1, 2, and

(σt,F ◦r σu,H)(γ) = R2
2(F, σ̂t,F [xj ], σ̂t,F [xj ])

= γ(s′1, s
′
2) where var(γ(s′1, s

′
2)) = {xj}; j = 1, 2.

Then σt,F ◦r σu,H , σu,H ◦r σt,F ∈ R′′xi
∪ R′′′xi

∪ R∗Ti
and R′′xi

∪ R′′′xi
∪ R∗Ti

is a
submonoid of Relhyp((2), (2)). �

Proposition 2. R′x1
∪ R′′′xi

∪ R∗Ti
and R′x2

∪ R′′′xi
∪ R∗Ti

are submonoids of
Relhyp((2), (2)).

Proof. We show that R′x1
∪R′′′xi

∪R∗Ti
is closed under ◦r.

Case 1: σt,F ∈ R′x1
. Then t = x1, F = γ(s1, s2) where var(F ) ⊆ X2 such that i−

most(sb′k
) = xbk for all i, k = 1, 2 and some distinct b

′

1, b
′

2 ∈ {1, 2}.
Case 1.1: σu,H ∈ R′x1

. Consider

(σt,F ◦r σu,H)(f) = σ̂t,F [x1] = x1, and

(σt,F ◦r σu,H)(γ) = σ̂t,F [γ(h1, h2)].

(1) If |var(F )| = 1, |var(H)| = 1, then

σ̂t,F [γ(h1, h2)] = R2
2(F, σ̂x1,F [h1], σ̂x1,F [h2])

= γ(s′1, s
′
2) where |var(γ(s′1, s

′
2))| = 1.
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(2) If |var(F )| = 1, |var(H)| = 2, then

σ̂t,F [γ(h1, h2)] = R2
2(F, σ̂x1,F [h1], σ̂x1,F [h2])

= γ(s′1, s
′
2) where |var(γ(s′1, s

′
2))| = 1.

(3) If |var(F )| = 2, |var(H)| = 1, then

σ̂t,F [γ(h1, h2)] = R2
2(F, σ̂x1,F [h1], σ̂x1,F [h2])

= γ(s′1, s
′
2) where |var(γ(s′1, s

′
2))| = 1.

(4) If |var(F )| = 2, |var(H)| = 2, then

σ̂t,F [γ(h1, h2)] = R2
2(F, σ̂x1,F [h1], σ̂x1,F [h2])

= γ(s′1, s
′
2) where var(γ(s′1, s

′
2)) = {xb1 , xb2}

such that 1−most(sb′k) = xbk for all i, k = 1, 2.

Case 1.2: σu,H ∈ R′′′xi
. Then u = xi ∈ X2, H = γ(h1, h2) where |var(H)| =

1. Consider

(σt,F ◦r σu,H)(f) = σ̂t,F [xi] = xi, and

(σt,F ◦r σu,H)(γ) = R2
2(F, σ̂xi,F [h1], σ̂xi,F [h2])

= γ(S2
2(s1, i−most(h1), i−most(h2)),

S2
2(s2, i−most(h1), i−most(h2)))

= γ(s′1, s
′
2) where |var(γ(s′1, s

′
2))| = 1.

Case 1.3: σu,H ∈ R∗Ti
. Then u = f(u1, u2), H = γ(h1, h2) where ui, hi ∈

X2 such that |var(u)| = 1 and var(u) = var(H). Consider

(σt,F ◦r σu,H)(f) = σ̂xi,F [f(u1, u2)] = xj , and

(σt,F ◦r σu,H)(γ) = R2
2(F, σ̂xi,F [xj ], σ̂xi,F [xj ])

= γ(s′1, s
′
2) where var(γ(s′1, s

′
2)) = {xj}; j = 1, 2.

Case 2: σt,F ∈ R′′′xi
. Then t = xi ∈ X2, F = γ(s1, s2) where |var(F )| = 1.

Case 2.1: σu,H ∈ R′x1
. Then u = x1, H = γ(h1, h2) where var(H) ⊆

X2 such that
i −most(hb′k) = xbk for all i, k = 1, 2 and some distinct b

′

1, b
′

2 ∈ {1, 2}. Con-

sider

(σt,F ◦r σu,H)(f) = σ̂t,F [x1] = x1, and



P. Kunama and S. Leeratanavalee 129

(σt,F ◦r σu,H)(γ) = R2
2(F, σ̂xi,F [h1], σ̂xi,F [h2])

= γ(S2
2(s1, i−most(h1), i−most(h2)),

S2
2(s2, i−most(h1), i−most(h2)))

= γ(s′1, s
′
2) where |var(γ(s′1, s

′
2))| = 1.

Case 2.2: σu,H ∈ R′′′xi
. The proof is similar to case 2.2 of Proposition 1.

Case 2.3: σu,H ∈ R∗Ti
. The proof is similar to case 2.3 of Proposition 1.

Case 3: σt,F ∈ R∗Ti
. Then t = f(t1, t2), F = γ(s1, s2) where ti, si ∈

X2 such that
|var(t)| = 1 and var(t) = var(F ).

Case 3.1: σu,H ∈ R′x1
. Then u = x1, H = γ(h1, h2) where var(H) ⊆

X2 such that
i −most(hb′k) = xbk for all i, k = 1, 2 and some distinct b

′

1, b
′

2 ∈ {1, 2}. Con-

sider

(σt,F ◦r σu,H)(f) = σ̂t,F [x1] = x1, and

(σt,F ◦r σu,H)(γ) = R2
2(F, σ̂t,F [h1], σ̂t,F [h2])

= γ(S2
2(s1, σ̂t,F [h1], σ̂t,F [h2]), S2

2(s2, σ̂t,F [h1], σ̂t,F [h2]))

= γ(s′1, s
′
2) where |var(γ(s′1, s

′
2))| = 1.

Case 3.2: σu,H ∈ R′′′xi
. The proof is similar to case 3.2 of Proposition 1.

Case 3.3: σu,H ∈ R∗Ti
. The proof is similar to case 3.3 of Proposition 1.

Therefore σt,F ◦r σu,H , σu,H ◦r σt,F ∈ R′x1
∪R′′′xi

∪R∗Ti
. For R′x2

∪R′′′xi
∪R∗Ti

,
the proof is similar to the previous proof. �

Theorem 1. (MUR1) is a unit-regular submonoid of Relhyp((2), (2)).

Proof. We get that every element in (MUR1) is unit-regular. Next we show
that (MUR1) = R′′xi

∪ R′′′xi
∪ R∗Ti

∪ R′T2
is closed under ◦r. By Proposition 1,

we have R′′xi
∪ R′′′xi

∪ R∗Ti
is a submonoid of Relhyp((2), (2)). So we consider

some cases in (MUR1). Let σt,F , σu,H ∈ (MUR1).
Case 1: σt,F ∈ (MUR1) and σu,H ∈ R′T2

. Then u = f(x2, x1), H =
γ(x2, x1).

Case 1.1: σt,F ∈ R′′xi
. Then t = xi ∈ X2, F = γ(s1, s2) where var(F ) =

{x1, x2} such that i−most(sb′k) = xbk for all i, k = 1, 2 and some distinct b
′

1, b
′

2 ∈
{1, 2} with if i = 1, then rightmost(s1) 6= rightmost(s2), if i = 2, then leftmost(s1)
6= leftmost(s2). Consider

(σt,F ◦r σu,H)(f) = σ̂xi,F [f(x2, x1)] =

{
x2 if i = 1
x1 if i = 2

, and
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(σt,F ◦r σu,H)(γ) = R2
2(F, σ̂xi,F [x2], σ̂xi,F [x1])

= γ(S2
2(s1, x2, x1), S2

2(s2, x2, x1))

= γ(s′1, s
′
2) where var(γ(s′1, s

′
2)) = {xi1 , xi2} such that

i−most(s′i′k) = xik ; i, k = 1, 2.

Case 1.2: σt,F ∈ R′′′xi
. Then t = xi ∈ X2, F = γ(s1, s2) where |var(F )| = 1.

Consider

(σt,F ◦r σu,H)(f) = σ̂xi,F [f(x2, x1)] =

{
x2 if i = 1
x1 if i = 2

, and

(σt,F ◦r σu,H)(γ) = R2
2(F, σ̂xi,F [h1], σ̂xi,F [h2])

= γ(S2
2(s1, x2, x1), S2

2(s2, x2, x1))

= γ(s′1, s
′
2) where |var(γ(s′1, s

′
2))| = 1.

Case 1.3: σt,F ∈ R∗Ti
. Then t = f(t1, t2), F = γ(s1, s2) where ti, si ∈

X2 such that
|var(t)| = 1 and var(t) = var(F ). Consider

(σt,F ◦r σu,H)(f) = S2
2(t, σ̂t,F [x2], σ̂t,F [x1])

= f(t′1, t
′
2) where var(f(t′1, t

′
2)) = {xj}; j = 1, 2, and

(σt,F ◦r σu,H)(γ) = R2
2(F, σ̂t,F [x2], σ̂t,F [x1])

= γ(s′1, s
′
2) where var(γ(s′1, s

′
2)) = {xj}; j = 1, 2.

Case 2: σt,F ∈ R′T2
. Then t = f(x2, x1), F = γ(x2, x1).

Case 2.1: σu,H ∈ R′′xi
. Then u = xi ∈ X2, H = γ(h1, h2) where var(H) =

{x1, x2} such that i−most(hb′k) = xbk for all i, k = 1, 2 and some distinct b
′

1, b
′

2 ∈
{1, 2} with if i = 1, then rightmost(h1) 6= rightmost(h2), if i = 2, then leftmost(h1)
6= leftmost(h2). Consider

(σt,F ◦r σu,H)(f) = σ̂t,F [xi] = xi, and

(σt,F ◦r σu,H)(γ) = R2
2(F, σ̂t,F [h1], σ̂t,F [h2])

= γ(s′1, s
′
2) where var(γ(s′1, s

′
2)) = {xi1 , xi2} such that

i−most(s′i′k) = xik ; i, k = 1, 2.

Case 2.2: σu,H ∈ R′′′xi
. Then u = xi ∈ X2, H = γ(h1, h2) where |var(H)| =

1. Consider

(σt,F ◦r σu,H)(f) = σ̂t,F [xi] = xi, and
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(σt,F ◦r σu,H)(γ) = R2
2(F, σ̂t,F [h1], σ̂t,F [h2])

= γ(s′1, s
′
2) where |var(γ(s′1, s

′
2))| = 1.

Case 2.3: σu,H ∈ R∗Ti
. Then u = f(u1, u2), H = γ(h1, h2) where ui, hi ∈

X2 such that |var(u)| = 1 and var(u) = var(H). Consider

(σt,F ◦r σu,H)(f) = S2
2(t, σ̂t,F [u1], σ̂t,F [u2])

= γ(t′1, t
′
2) where var(γ(t′1, t

′
2)) = {xj}; j = 1, 2, and

(σt,F ◦r σu,H)(γ) = R2
2(F, σ̂t,F [h1], σ̂t,F [h2])

= γ(s′1, s
′
2) where var(γ(s′1, s

′
2)) = {xj}; j = 1, 2.

Case 2.4: σu,H ∈ R′T2
. Consider

(σt,F ◦r σu,H)(f) = S2
2(t, σ̂t,F [x2], σ̂t,F [x1])

= f(x1, x2), and

(σt,F ◦r σu,H)(γ) = R2
2(F, σ̂t,F [x2], σ̂t,F [x1])

= γ(x1, x2).

Therefore (MUR1) is a unit-regular submonoid of Relhyp((2), (2)). �

Theorem 2. (MUR2), (MUR3) are unit-regular submonoids of Relhyp((2), (2)).

Proof. We get that every element in (MUR2) is unit-regular. Next we show
that (MUR2) = R′x1

∪ R′′′xi
∪ R∗T1

∪ R′T3
is closed under ◦r. By Proposition 2,

we have R′x1
∪ R′′′xi

∪ R∗Ti
is a submonoid of Relhyp((2), (2)). So we consider

some cases in (MUR2). Let σt,F , σu,H ∈ (MUR2).
Case 1: σt,F ∈ (MUR2) and σu,H ∈ R′T3

. Then u = f(x1, u2), H =
γ(x1, h2)
where |var(u)| = 1, |var(H)| = 1 such that u2, h2 ∈W(2)(X2)\X2.

Case 1.1: σt,F ∈ R′x1
. Then t = x1, F = γ(s1, s2) where var(F ) ⊆

X2 such that
1 −most(sb′k) = xbk for all i, k = 1, 2 and some distinct b

′

1, b
′

2 ∈ {1, 2}. Con-

sider

(σt,F ◦r σu,H)(f) = σ̂x1,F [f(x1, u2)] = x1, and

(σt,F ◦r σu,H)(γ) = R2
2(F, σ̂x1,F [x1], σ̂x1,F [h2])

= γ(s′1, s
′
2) where var(γ(s′1, s

′
2)) = {x1}.
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Case 1.2: σt,F ∈ R′′′xi
. Then t = xi ∈ X2, F = γ(s1, s2) where |var(F )| = 1.

Consider

(σt,F ◦r σu,H)(f) = σ̂xi,F [f(x1, u2)] = x1, and

(σt,F ◦r σu,H)(γ) = R2
2(F, σ̂xi,F [x1], σ̂xi,F [h2])

= γ(s′1, s
′
2) where var(γ(s′1, s

′
2)) = {x1}.

Case 1.3: σt,F ∈ R∗T1
. Then t = f(t1, t2), F = γ(s1, s2) where ti, si ∈

X2 such that
|var(t)| = 1 and var(t) = var(F ). Consider

(σt,F ◦r σu,H)(f) = S2
2(t, σ̂t,F [x1], σ̂t,F [u2])

= f(t′1, t
′
2) where var(f(t′1, t

′
2)) = {x1}, and

(σt,F ◦r σu,H)(γ) = R2
2(F, σ̂t,F [x1], σ̂t,F [h2])

= γ(s′1, s
′
2) where var(γ(s′1, s

′
2)) = {x1}.

Case 2: σt,F ∈ R′T3
. Then t = f(x1, t2), F = γ(x1, s2) where |var(t)| =

1, |var(F )| = 1 such that t2, s2 ∈W(2)(X2)\X2.
Case 2.1: σu,H ∈ R′x1

. Then u = x1, H = γ(h1, h2) where var(H) ⊆
X2 such that
1 −most(hb′k) = xbk for all i, k = 1, 2 and some distinct b

′

1, b
′

2 ∈ {1, 2}. Con-

sider

(σt,F ◦r σu,H)(f) = σ̂t,F [x1] = x1, and

(σt,F ◦r σu,H)(γ) = σ̂t,F [γ(h1, h2)].

(1) If |var(H)| = 1, then

σ̂t,F [γ(h1, h2)] = R2
2(F, σ̂t,F [h1], σ̂t,F [h2])

= γ(s′1, s
′
2) where |var(γ(s′1, s

′
2))| = 1.

(2) If |var(H)| = 2, then

σ̂t,F [γ(h1, h2)] = R2
2(F, σ̂t,F [h1], σ̂t,F [h2])

= γ(s′1, s
′
2) where var(γ(s′1, s

′
2)) = {xi1 , xi2} such that

i−most(s′i′k) = xik ; i, k = 1, 2.

Case 2.2: σu,H ∈ R′′′xi
. Then u = xi ∈ X2, H = γ(h1, h2) where |var(H)| =

1. Consider

(σt,F ◦r σu,H)(f) = σ̂t,F [xi] = xi, and
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(σt,F ◦r σu,H)(γ) = R2
2(F, σ̂t,F [h1], σ̂t,F [h2])

= γ(s′1, s
′
2) where var(γ(s′1, s

′
2)) = {xj}; j = 1, 2.

Case 2.3: σu,H ∈ R∗T1
. Then u = f(u1, u2), H = γ(h1, h2) where ui, hi ∈

X2 such that |var(u)| = 1 and var(u) = var(H). Consider

(σt,F ◦r σu,H)(f) = S2
2(t, σ̂t,F [u1], σ̂t,F [u2])

= f(t′1, t
′
2) where var(f(t′1, t

′
2)) = {xj}; j = 1, 2, and

(σt,F ◦r σu,H)(γ) = R2
2(F, σ̂t,F [h1], σ̂t,F [h2])

= γ(s′1, s
′
2) where var(γ(s′1, s

′
2)) = {xj}; j = 1, 2.

Case 2.4: σu,H ∈ R′T3
. Then u = f(x1, u2), H = γ(x1, h2) where |var(u)| =

1, |var(H)| = 1 such that u2, h2 ∈W(2)(X2)\X2. Consider

(σt,F ◦r σu,H)(f) = S2
2(t, σ̂t,F [x1], σ̂t,F [u2])

= f(x1, t
′
2) where var(f(x1, t

′
2)) = {x1}, and

(σt,F ◦r σu,H)(γ) = R2
2(F, σ̂t,F [x1], σ̂t,F [h2])

= γ(x1, s
′
2) where var(γ(x1, s

′
2)) = {x1}.

Therefore (MUR2) is a unit-regular submonoid of Relhyp((2), (2)). For
(MUR3) is a unit-regular submonoid of Relhyp((2), (2)), the proof is similar
to the previous proof. �

Theorem 3. (MUR4), (MUR5) are unit-regular submonoids of Relhyp((2), (2)).

Proof. (MUR4), (MUR5) are unit-regular submonoids of Relhyp((2), (2)), the
proof is similar to the Theorem 2. proof. �

Theorem 4. (MUR1) is a maximal unit-regular submonoid of Relhyp((2), (2)).

Proof. Let K be a proper unit-regular submonoid of Relhyp((2), (2)) such that
(MUR1) ⊆ K ⊂ Relhyp((2), (2)). Let σt,F ∈ K, then σt,F is unit-regular.

Case 1: σt,F ∈ R′xi
\R′′xi

∪R′′′xi
. Then t = xi ∈ X2, F = γ(s1, s2) where var(F ) =

{x1, x2} such that i−most(sb′k) = xbk for all i, k = 1, 2 and some distinct b
′

1, b
′

2 ∈
{1, 2} with if i = 1, then rightmost(s1) = rightmost(s2), if i = 2, then leftmost(s1)
= leftmost(s2).

Case 1.1: i = 1. Choose σu,H ∈ R′′x2
. Then u = x2, H = γ(h1, h2) where var(H)

= {x1, x2} such that 2−most(hb′k) = xbk for all i, k = 1, 2 and some distinct b
′

1, b
′

2

∈ {1, 2} with leftmost(h1) 6= leftmost(h2). Consider

(σt,F ◦r σu,H)(f) = σ̂t,F [x2] = x2, and
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(σt,F ◦r σu,H)(γ) = R2
2(F, 1−most(h1), 1−most(h2))

= γ(s′1, s
′
2) where var(γ(s′1, s

′
2)) = {xi1 , xi2} such that

rightmost(s′1) = rightmost(s′2).

So σu,H ◦r σt,F /∈ R′X .
Case 1.2: i = 2. Choose σu,H ∈ R′′x1

. Then u = x1, H = γ(h1, h2) where var(H)

= {x1, x2} such that 1−most(hb′k) = xbk for all i, k = 1, 2 and some distinct b
′

1, b
′

2

∈ {1, 2} with rightmost(h1) 6= rightmost(h2). Consider

(σt,F ◦r σu,H)(f) = σ̂t,F [x1] = x1, and

(σt,F ◦r σu,H)(γ) = R2
2(F, 2−most(h1), 2−most(h2))

= γ(s′1, s
′
2) where var(γ(s′1, s

′
2)) = {xi1 , xi2} such that

leftmost(s′1) = leftmost(s′2).

So σu,H ◦r σt,F /∈ R′X .

Case 2: σt,F ∈ RT \R′T1
∪R′T2

.
Case 2.1: σt,F ∈ R′T3

. Then t = f(x1, t2), F = γ(x1, s2) where |var(t)| =
1, |var(F )| = 1 such that t2, s2 ∈ W(2)(X2)\X2. Choose σu,H ∈ R′T2

, then
u = f(x2, x1), H = γ(x2, x1). Consider

(σt,F ◦r σu,H)(f) = S2
2(t, σ̂t,F [x2], σ̂t,F [x1])

= f(x2, t
′
2) where var(f(x2, t

′
2)) = {x2}, and

(σt,F ◦r σu,H)(γ) = R2
2(F, σ̂t,F [x2], σ̂t,F [x1])

= γ(x2, s
′
2) where var(γ(x2, s

′
2)) = {x2}.

So σt,F ◦r σu,H ∈ R6 and is not closed into itself.
Case 2.2: σt,F ∈ R′T4

. Then t = f(t1, x2), F = γ(s1, x2) where |var(t)| =
1, |var(F )| = 1 such that t1, s1 ∈ W(2)(X2)\X2. Choose σu,H ∈ R′T2

. Then
u = f(x2, x1), H = γ(x2, x1). Consider

(σt,F ◦r σu,H)(f) = S2
2(t, σ̂t,F [x2], σ̂t,F [x1])

= f(t′1, x1) where var(f(t′1, x1)) = {x1}, and

(σt,F ◦r σu,H)(γ) = R2
2(F, σ̂t,F [x2], σ̂t,F [x1])

= γ(s′1, x1) where var(γ(s′1, x1)) = {x1}.

So σt,F ◦r σu,H ∈ R5 and is not closed into itself.
Thus σt,F ∈ (MUR1). Therefore K ⊆ (MUR1) and thus K = (MUR1). �
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Theorem 5. (MUR2), (MUR3) are maximal unit-regular submonoids of Relhyp((2), (2)).

Proof. Let K be a proper unit-regular submonoid of Relhyp((2), (2)) such that
(MUR2) ⊆ K ⊂ Relhyp((2), (2)). Let σt,F ∈ K. Then σt,F is unit-regular.

Case 1: σt,F ∈ R′xi
\R′x1

∪R′′′xi
. Then t = x2, F = γ(s1, s2) where var(F ) =

{x1, x2} such that 2−most(sb′k) = xbk for all i, k = 1, 2 and some distinct b
′

1, b
′

2.

Case 1.1: If lefmost(s1) = leftmost(s2). Choose σu,H ∈ R′x1
. Then

u = x1, H = γ(h1, h2) where var(H) = {x1, x2} such that 1 − most(hb′k) =

xbk for all i, k
= 1, 2 and some distinct b

′

1, b
′

2 ∈ {1, 2} with rightmost(h1) 6= rightmost(h2).
Consider

(σt,F ◦r σu,H)(f) = σ̂t,F [x1] = x1, and

(σt,F ◦r σu,H)(γ) = R2
2(F, 2−most(h1), 2−most(h2))

= γ(s′1, s
′
2) where var(γ(s′1, s

′
2)) = {xi1 , xi2} such that

leftmost(s′1) = leftmost(s′2).

So σu,H ◦r σt,F /∈ R′X .
Case 1.2: If lefmost(s1) 6= leftmost(s2). Choose σu,H ∈ R′x1

. Then
u = x1, H = γ(h1, h2) where var(H) = {x1, x2} such that 1 − most(hb′k) =

xbk for all i, k
= 1, 2 and some distinct b

′

1, b
′

2 ∈ {1, 2} with rightmost(h1) = rightmost(h2).
Consider

(σu,H ◦r σt,F )(f) = σ̂u,H [x2] = x2, and

(σu,H ◦r σt,F )(γ) = R2
2(H, 1−most(s1), 1−most(s2))

= γ(h′1, h
′
2) where var(γ(h′1, h

′
2)) = {xi1 , xi2} such that

rightmost(h′1) = rightmost(h′2).

So σu,H ◦r σt,F /∈ R′X .

Case 2: σt,F ∈ RT \R′T1
∪R′T3

. Choose σu,H ∈ R′T3
. Then u = f(x1, u2), H =

γ(x1, h2) where |var(u)| = 1, |var(H)| = 1 such that u2, h2 ∈W(2)(X2)\X2.
Case 2.1: σt,F ∈ R′T2

. Then t = f(x2, x1), F = γ(x2, x1). Consider

(σu,H ◦r σt,F )(f) = S2
2(u, σ̂u,H [x2], σ̂u,H [x1])

= f(x2, u
′
2) where var(f(x2, u

′
2)) = {x2}, and

(σu,H ◦r σt,F )(γ) = R2
2(H, σ̂u,H [x2], σ̂u,H [x1])

= γ(x2, h
′
2) where var(γ(x2, h

′
2)) = {x2}.
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So σu,H ◦r σt,F ∈ R6 and is not closed into itself.
Case 2.2: σt,F ∈ R′T4

. Then t = f(t1, x2), F = γ(s1, x2) where |var(t)| =
1, |var(F )| = 1 such that t1, s1 ∈W(2)(X2)\X2. Consider

(σu,H ◦r σt,F )(f) = S2
2(u, σ̂u,H [t1], σ̂u,H [x2])

= f(u′1, u
′
2) where u′i ∈W(2)(X2)\X2, and

(σu,H ◦r σt,F )(γ) = R2
2(H, σ̂u,H [s1], σ̂u,H [x2])

= γ(h′1, h
′
2) where h′i ∈W(2)(X2)\X2.

So σu,H ◦r σt,F is not unit-regular.
Thus σt,F ∈ (MUR2). Therefore K ⊆ (MUR2) and thus K = (MUR2).

For (MUR3) is a maximal unit-regular submonoid of Relhyp((2), (2)), the proof
is similar to the previous proof. �

Theorem 6. (MUR4), (MUR5) are maximal unit-regular submonoids of Relhyp((2), (2)).

Proof. (MUR4), (MUR5) are maximal unit-regular submonoids ofRelhyp((2), (2)),
the proof is similar to the Theorem 5 proof. � In 1980, H.D. Alarcao showed
that: A monoid S is factorisable if and only if it is unit-regular[1].

Corollary 1. (MUR1), (MUR2), (MUR3), (MUR4), (MUR5) are maximal fac-
torisable submonoids of the monoid relational hypersubstitutions for algebraic
systems of type ((2), (2)).
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