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Abstract
The number of central idempotents in group ring Z,[S3] have been

determined. Furthermore, some explicit form of central idempotents have
also been obtained.

1 Introduction

The problem of computing central idempotents of rings and group rings is an
important problem. It has drawn attention of many researchers. A central
idempotent that cannot be written as the sum of two non zero orthogonal cen-
tral idempotents is called a centrally primitive idempotent. Meyer [5] computed
primitive central idempotents of F,[G] for arbitrary prime powers ¢, and arbi-
trary finite groups G. Aso, a well-known result of Osima [0, p.178] gives the
explicit form for the primitive central idempotents in K[G], when K is a field.
Martinez [2] computed central irreducible idempotents of the dihedral group
algebra Fy[Dsy]. These papers do not provide all the central idempotents. In
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this paper, we have determined the number of central idempotents in the group
ring Z,[S3], the symmetric group Ss over Z, the ring of integers modulo n, for
all positive integers n. Further, we provide an explicit form of these central
idempotents.

Let G be a group and R be a ring, then the set of all linear combinations
@ = ) cgagg where a; € R and only finitely many of the a,'s are non-
zero is defined as group ring RG. Sum and product in group ring is given by

(ZQEG agg) + (ZQEG bgg) - ZgEG (ag +by) g and

(dec agg) (dec bgg) = . ,eq (agby) respectively. Group ring RG is a
ring under addition and multiplication defined above. An element e of a ring
is said to be an idempotent if e? = e. An idempotent e in a ring R is said to
be a central idempotent if e commutes with every element of the ring R. For
more basic results on group rings we refer to [3].

Definition 1. A set of elements that are connected by an operation called
conjugation forms a conjugacy class.

Sum of elements in a conjugacy class is called the class sum of the conjugacy
class.

Lemma 1.1 ([I], Theorem 3.6.2, p151). Let G be a group and R be a commu-
tative ring. Then, the set of all class sums forms a basis of the center Z(R[G])
of R|G], over R.

Example 1. Symmetric group of degree 3 having presentation Sz = (o, 7|72 =
o3 =1, or = 77 10), consists of 3 conjugacy classes. These are C; = {1}
the idenditity element, Co = {7,70,70?} containg all transpositions, and C3 =
{0,0?} containing 3-cycles.

Class sums in Ss are y1 = 1,79 = 7+ 70 + 702,73 = 0 + 02 respectively.
These form a basis of Z(R[Ss]), over R. Therefore, any arbitrary element of
Z(R[S5]) can be written as a linear combination of v1,v2,7vs over R.

In solving the system of equations, number theory plays an important role.
The following result gives a unique solution to simultaneous linear congruences
with coprime moduli.

Lemma 1.2 ([4],Chinese Remainder Theorem). Let ni,ng,...,n; be integers
with ged(ni,n;) = 1 whenever i # j. Let n = ning---n; and ai,ag,...,a; be
integers. Then the system of linear congruences

x=a; modn; (1<i<n)

has a simultaneous unique solution in Z, given by * = 22:1 a;N;y;, where
Nj, = ﬂk and yy, 1s the unique solution of Nyy =1 mod ny.

n
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In the case of a finitely generated abelian group, the following result guar-
antees that an abelian group splits as a direct product of finitely many groups
of the form Z, for p prime,

Lemma 1.3 ([7],Fundamental Theorem of Finite Abelian Group). Every finite
abelian group is isomorphic to a direct product of cyclic groups of prime power
order.

Let n = pi"py? ---p;"" be the prime factorization of n. Since Z,, is a finite
abelian group, by lemma 3,

@ Ly — Zp;n ® Zp;z ®P ZZD;LL

is an isomorphism. Then for an element a € Z,, is an idempotent in Z,, if and
only if each @ mod p;* is an idempotent in Z,ni . Using above two results we
can calculate the number of idempotents in a finite ring.

Lemma 1.4. The number of pairwise non congruent idempotents in Z,, is equal
to 2L.

2 Central Idempotents

ny

Theorem 2.1. Letn = pi"p5* - - p;"" where p}s are distinct primes and ny,na, . ..

are positive integers.
Then the number of central idempotents in Z,[Ss] is

(i) 230 ifp; >3V 1<i<lI.

(ii) 231 ifpr =2 andp; >3V 2<i<I.

(ii5) 232 [ ifpy =3 andp; >3V 2<i<L.

(iv) 2873 ifpr =2ps =3 andp; >3V 3<i<I.

Proof. S3 = (0,7|7> = 0% = 1,07 = 77 '0) has three conjugacy classes

{1},{0, 02} and {7, 70, 70?}. By lemma 1, class sums of these conjugacy classes
form a basis of center of Z,[S3], over Z,. That is,
Z(Zn[S5) = (1,0 +o*, 7(1+ 0+ 0%))
Let e be a central idempotent in Z,[Ss]. Then, e can be expressed as
e=a-1+b(c+0%) +c(r(l+ 0+ %) for some a,b,c € Zy,

which can be written as

e=a-1+pl+o+?)+yv1+0o+>+7(1+0+0?)),

, U
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where « = a — b, =b—c¢,v = c € Z,. As e is an idempotent, e? = e.
Comparing the coefficients of class sums in the equation €2 = e, we get the
following relations:

o> = a (1)
382+2a8 = B (2)
672 +20y+66y = ~ (3)

The values of «, 8 and ~ give all the possible central idempotents in Z,[Ss].
By lemma 3, we observe that equation has 2! solutions for a. Let a; be an
arbitrary solution of . Then equation implies

382 + 28 =0
= B3B8+ (201 —1)] =0
— 36% = —(20q — 1)B (4)

Case(i) : If p; >3V 1<i<lI
By fundamental theorem of finite abelian groups [7], the mapping

gi) Ly, — Zp;‘q @Zp;'rz D--- @Zplm

defined by ¢(a) = (a1, as,...,a;) where each a; = a mod p;*,
for all @ € Z,, is an isomorphism. For § € Z,, ,

#(B) = (x1,22,...,x;) where each z; = mod p;".
From equation , we have
382 =—(2a; — 1) mod n

= 327 = —(2a; — 1)z; mod p}" V1

i <
<~  z;3z;+ (2a; —1)] =0 mod p}" V1l <

l
L.

i

<
<

We claim that z; and 3z; + (2a3 — 1) cannot be zero divisors in Zplnz.
If possible, suppose x; # 0 and 3x; + (27 — 1) # 0. Then z; = p]r and
3z; + (201 — 1) = p;s , where p; {7, p;{sand n+¢ > n,.

3pir+ (200 — 1) = pis
without any loss of generality, let n < ¢, then
pl[3r —p;"s] = —(2a1 — 1).
This implies that p; is invertible in Zp:'i. A contradiction. Therefore,

;=0 or 3z + (200 —1)=0 mod p;*
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Since 3 is invertible in each Z Pl there are 2! possible values for 3 that satisfy

equation (4). Let $; be one of these. Substituting « = a4, and § = §; in
equation (3)), we get

67> + 2017 + 6817 = 7
= A[6y+ (21 +651—1)7] =0 (5)

Further, since 6 is invertible in each Z,»: , by similar calculations we observe
k2

that there are 2! possible values for v satisfying . Hence there are 2! x 2! x 2!
solutions for the three simultaneous equations.
Thus, there are 23! central idempotents in this case.

Case(ii) : If py =2, p;, >3V2<i<lL
Note that 3 is invertible in each Z, mi Therefore equation (4 . have same so-
lution for B as obtained in case(l). Though 6 is not invertible in Z, i but it
is invertible in Z» V2 <1 <1, therefore there are 2!=1 possible Valueb for ~

which satisfies equation . This gives that there are 2! x 2! x 2!=1 solutions
for the three simultaneous equations.
Hence, there are 23~ central idempotents in this case.

Case(iii) : If py =3, p; >3V2<i<Ll
Observe that 3 is not invertible in prl but 3 is invertible in me V2 <4 <.

Hence there are 2!~! possible values for 3 satisfying equation (4 . Again, 6
is not invertible in Z, m but 6 is invertible in Z Pl V2 < i <[, we find that

there are 2!~1 p0551ble values for v satisfying equatlon . Thus there are
28 x 21=1 x 2l=1 = 931=2 golutions for the three simultaneous equations.
And therefore there are 23/=2 central idempotents in this case.

Case(iv) : If p1 =3, p2=2,p;, >3V3<i<l.
Again 3 is not invertible in Z, ™ but being invertible in Zn; V2 <1 <1,

get 2!=1 possible values for satlsfylng equation (4] Next 6 is not 1nvert1ble
in Z, i and Z, n2 but 6 is invertible in Z,» V3 <4 < l there are 2!=2 possible

values for ~y Wthh satisfy equation (|5 ThlS gives 2! x 2l 1 % 2!=2 solutions for

the three simultaneous equations.

Hence, there are 23/=3 central idempotents in this case. O

Corollary 1. Central idempotents in Z,[Ss] are of the form
a+pBl+o+d*)+y(1+0o+o*+7(1+0+0%),

where
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1. «is an idempotent in Z,,, and each one is precisely of the form 22:1 hier+
mZ , where ¢, € {0,1} and hy € (Hi:l,i;ﬁk‘p?i) Z such that hy, — 1 €
P Z.

2. B is the simultaneous solution of the system of linear congruences

B=a; modpl (1<i<l),
where (for each «),
e a; € {0,—(2a — 1)(37! mod pl'"") mod n} V1<i<lIin cases (i)
and (ii), and
e a; = 0,a; € {0,—(2a — 1)(37! mod p}"*) modn} V2 <i<Iin
cases (1) and (iv).
Using Chinese Remainder theorem [{]], the solution of the above system
of linear congruences is given by 3 = 22:1 a; P;x; where

.Pk‘:p"LLk
k

o xj, is the unique solution of Pyx =1 mod pp*
3. 7y is the solution of the system of linear congruences
y=b; modp (1<i<l),
where (for each « and ),

e b, €{0,—(2a+68—1)(6"" mod p}") modn}V1<i<Iin case
(i), and

e by =0,b; € {0,—(2a+ 68 —1)(67" mod p}') modn}V2<i<lI
in cases (ii) and (iii), and

e by =0,bp=0,b; € {0,—(2a+68—1)(6"1 mod p") mod n}V3<
i <1l in case (w).
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