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Department of Mathematics, Faculty of Science,
Cumhuriyet University, Sivas - TURKEY

e-mail: eminekoc@cumhuriyet.edu.tr; ogolbasi@cumhuriyet.edu.tr
http://www.cumhuriyet.edu.tr

Abstract

Let R be a semiprime ring, I a nonzero ideal of R, D : R × R → R a
symmetric bi-(α, α)-derivation, d be the trace of D and α an automorphism.
In the present paper, we shall prove that R contains a nonzero central
ideal if any one of the following holds: i) d([x, y]α,α) ± [x, y]α,α ∈ Cα,α,
ii)[d(x), d(y)]α,α ± [x, y]α,α ∈ Cα,α, iii)d((x ◦ y)α,α) ± (x ◦ y)α,α ∈ Cα,α,
iv)(d(x) ◦ d(y))α,α ± (xoy)α,α ∈ Cα,α, v)d((x ◦ y)α,α) ± [x, y]α,α ∈ Cα,α,
vi)(d(x) ◦ d(y))α,α ± [x, y]α,α ∈ Cα,α, vii)d([x, y]α,α) ± (x ◦ y)α,α ∈ Cα,α,
viii)[d(x), d(y)]α,α ± (x ◦ y)α,α ∈ Cα,α, ix)d (x) d (y) ± [x, y]α,α ∈ Cα,α,

x)d (x) d (y)±(x ◦ y)α,α ∈ Cα,α, xi)[d (x) , y]α,α ∈ Cα,α, xii)d
(
[x, y]α,α

)
±

[d(x), y]α,α ∈ Cα,α,

xiii)d
(
(x ◦ y)α,α

)
± [d(x), y] ∈ Cα,α, for all x, y ∈ I.

1 Introduction

Throughout R will represent an associative ring with center Z. A ring R
is said to be prime if xRy = (0) implies that either x = 0 or y = 0 and
semiprime if xRx = (0) implies that x = 0, where x, y ∈ R. A prime ring
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is obviously semiprime. For any x, y ∈ R, the symbol [x, y] stands for the
commutator xy − yx and the symbol x ◦ y stands for the commutator xy +
yx. α a mapping from R into itself. For any x, y ∈ R, we write [x, y]α,α

and (x ◦ y)α,α, for xα(y) − α(y)x and xα(y) + α(y)x respectively. We set
Cα,α={c ∈ R | cα(x) = α(x)c for all x ∈ R} and call (α, α)-center of R. An ad-
ditive mapping d : R → R is called a derivation if d(xy) = d(x)y + xd(y) holds
for all x, y ∈ R. A mapping D(., .) : R × R → R is said to be symmetric if
D(x, y) = D(y, x) for all x, y ∈ R. A mapping d : R → R is called the trace of
D(., .) if d(x) = D(x, x) for all x ∈ R. It is obvious that if D(., .) is bi-additive
(i.e., additive in both arguments), then the trace d of D(., .) satisfies the iden-
tity d(x + y) = d(x) + d(y) + 2D(x, y), for all x, y ∈ R. If D(., .) is bi-additive
and satisfies the identities

D(xy, z) = D(x, z)y + xD(y, z)

and
D(x, yz) = D(x, y)z + yD(x, z),

for all x, y, z ∈ R. Then D(., .) is called a symmetric bi-derivation. A bi-additive
mapping D(., .) : R×R → R is said to be bi-(α, α)-derivation if it satisfies the
identities

D(xy, z) = D(x, z)α(y) + α(x)D(y, z)

and
D(x, yz) = D(x, y)α(z) + α(y)D(x, z),

for all x, y, z ∈ R. Of course a symmetric bi-(1, 1)-derivation where 1 is the
identity map on R is symmetric bi-derivation.

The study of commuting mappings was initiaded by a well-known theorem
due to Posner [9] which states that the existence of a nonzero commuting deriva-
tion on a prime ring R implies that R is commutative. A number of authors
have extended the Posner’s theorem in several ways. The notion of additive
commuting mapping is closely connected with the notion of bi-derivation. Ev-
ery additive commuting mapping F : R → R gives rise to a bi-derivation on R.
Namely, linearizing [F (x), x] = 0, we get [F (x), y] = [x, F (y)] and we note that
the map (x, y) �−→ [F (x), y] is a bi-derivation. The concept of bi-derivation was
introduced by Maksa in [7]. It is shown in [8] that symmetric bi-derivations are
related to general solution of some functional equations. Some results concern-
ing symmetric bi-derivations in prime rings can found in [11] and [12]. Typical
examples are mappings of the form (x, y) �−→ λ[x, y] where λ ∈ C, the extended
centroid of R. We shall call such maps inner bi-derivations. It was shown in
[4] that every bi-derivation D of a noncommutative prime ring R is of the form
D(x, y) = λ[x, y] for some λ ∈ C.

F is called strong commutativity preserving (simply, SCP) on S if [x, y] =
[F (x), F (y)], for all x, y ∈ S. Derivations as well as SCP mappings have been
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extensively studied by researchers in the context of operator algebras, prime
rings and semiprime rings too. For more information on SCP, we refere [3], [5],
[1] and references therein.

On the other hand, in [6], Daif and Bell showed that if a semiprime ring R
has a derivation d satisfiying the following condition, then I is a central ideal;

there exists a nonzero ideal I of R such that
either d([x, y]) = [x, y] for all x, y ∈ I or d([x, y]) = −[x, y] for all x, y ∈ I.

This result was extended for semiprime rings in [2].
In this paper, we extend some well known results concerning of ideals in

semiprime rings with bi-(α, α)-derivation. Throughout the present paper, we
shall make use of the following basic identities without any specific mention:
i) [x, yz] = y[x, z] + [x, y]z
ii) [xy, z] = [x, z]y + x[y, z]
iii) xyoz = (xoz)y + x[y, z] = x(yoz) − [x, z]y
iv) xoyz = y(xoz) + [x, y]z = (xoy)z + y[z, x]
v) [xy, z]α,α = x [y, z]α,α + [x, α(z)] y = x[y, α(z)] + [x, z]α,α y
vi) [x, yz]α,α = α(y) [x, z]α,α + [x, y]α,α α(z)
vii) (xz ◦ y)α,α = x(z ◦ y)α,α − [x, α(y)]z.

2 Results

Lemma 2.1. [6, Lemma 2 (b)] If R is a semiprime ring, then the center of a
nonzero ideal of R is contained in the center of R.

Lemma 2.2. [10, Theorem 2.1] Let R be a semiprime ring, I a nonzero two-
sided ideal of R and a ∈ I such that axa = 0 for all x ∈ I, then a = 0.

Lemma 2.3. Let R be a semiprime ring, I a nonzero ideal of R and α an
automorphism. If [I, I]α,α = (0), then R contains a nonzero central ideal.

Proof. By the hypothesis, we have

[x, y]α,α = 0, for all x, y ∈ I.

Replacing x by xz, z ∈ I in this equation and using this equation, we obtain
that

x[z, α (y)] = 0, for all x, y, z ∈ I,

and so
I[z, α (y)] = 0, for all y, z ∈ I.

By Lemma 2.2, we get

[z, α (y)] = 0, for all y, z ∈ I.
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Thus, we obtain that α(y) ∈ Z, for all y ∈ I by Lemma 2.1. Since α is an
automorphism, we get I ⊂ Z. We conclude that R contains a nonzero central
ideal. This completes the proof. �

Lemma 2.4. Let R be a semiprime ring, I a nonzero ideal of R and α an
automorphism. If [I, I]α,α ⊂ Cα,α, then R contains a nonzero central ideal.

Proof. By the hypothesis, we see that

[x, y]α,α ∈ Cα,α, for all x, y ∈ I.

Replacing x by xα(y) in the last expression and using this, we have

[x, y]α,α α(y) ∈ Cα,α, for all x, y ∈ I.

That is [
[x, y]α,α α(y), r

]
α,α

= 0, for all x, y ∈ I, r ∈ R.

Using the hypothesis in the last equation, we get

[x, y]α,α [α(y), α(r)] = 0, for all x, y ∈ I, r ∈ R.

and so
[x, y]α,α [r, y]α,α = 0, for all x, y ∈ I, r ∈ R.

Taking r by rx in the last equation and using this, we see that

[x, y]α,α α(r) [x, y]α,α = 0, for all x, y ∈ I, r ∈ R.

Since α is an automorphism, we have

[x, y]α,α R [x, y]α,α = 0, for all x, y ∈ I.

By the semiprimeness of R, we see that

[x, y]α,α = 0, for all x, y ∈ I.

By Lemma 2.3, we obtain that R contains a nonzero central ideal. This com-
pletes the proof. �

Lemma 2.5. Let R be a semiprime ring, I a nonzero ideal of R and α an
automorphism. If (I ◦ I)α,α ⊂ Cα,α, then R contains a nonzero central ideal.

Proof. By the hypothesis, we get

(x ◦ y)α,α ∈ Cα,α, for all x, y ∈ I.

Replacing x by xα(y) in the last expression and using this, we obtain that

(x ◦ y)α,α α(y) ∈ Cα,α, for all x, y ∈ I.
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This implies that

[(x ◦ y)α,α α(y), r]α,α = 0, for all x, y ∈ I, r ∈ R.

Using the hypothesis, we get

(x ◦ y)α,α [α(y), α(r)] = 0, for all x, y ∈ I, r ∈ R.

Since α is an automorphism, we have

(x ◦ y)α,α [α(y), r] = 0, for all x, y ∈ I, r ∈ R. (1)

Replacing x by rx in the above expression, we get

r (x ◦ y)α,α [α(y), r] − [r, α(y)]x[α(y), r] = 0.

Using equation (2.1), we find that

[r, α(y)]x[α(y), r] = 0.

Replacing r by z, z ∈ I in this equation, we get

[z, α(y)]I[z, α(y)] = (0), for all y, z ∈ I.

By Lemma 2.2, we have [z, α(y)] = (0), for all y, z ∈ I. Since α is an auto-
morphism, we see that y ∈ Z, for all y ∈ I by Lemma 2.1. That is I ⊂ Z. We
conclude that R contains a nonzero central ideal. This completes the proof. �

Theorem 2.6. Let R be a 2−torsion free semiprime ring, I a nonzero ideal of
R, D : R × R → R a symmetric bi-(α, α)-derivation, d be the trace of D and
α an automorphism. If d([x, y]α,α) ± [x, y]α,α ∈ Cα,α, for all x, y ∈ I, then R
contains a nonzero central ideal.

Proof. By the hypothesis, we get

d([x, y]α,α) ± [x, y]α,α ∈ Cα,α, for all x, y ∈ I.

Replacing y by y + z, z ∈ I in the above expression, we have

d([x, y]α,α) + d([x, z]α,α) + 2D([x, y]α,α, [x, z]α,α) ± [x, y]α,α ± [x, z]α,α ∈ Cα,α.

Using the hypothesis and R is 2−torsion free, we obtain that

D([x, y]α,α, [x, z]α,α) ∈ Cα,α, for all x, y, z ∈ I.

Taking z by y in last expression, we have

D([x, y]α,α, [x, y]α,α) ∈ Cα,α,
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and so,
d([x, y]α,α) ∈ Cα,α, for all x, y ∈ I.

Using the hypothesis, we arrive at

[x, y]α,α ∈ Cα,α, for all x, y ∈ I.

By Lemma 2.4, we obtain that R contains a nonzero central ideal. This com-
pletes the proof. �

Theorem 2.7. Let R be a 2−torsion free semiprime ring, I a nonzero ideal of
R, D : R×R → R a symmetric bi-(α, α)-derivation, d be the trace of D and α
an automorphism. If [d (x) , d (y)]α,α ± [x, y]α,α ∈ Cα,α, for all x, y ∈ I, then
R contains a nonzero central ideal.

Proof. By the hypothesis, we have

[d (x) , d (y)]α,α ± [x, y]α,α ∈ Cα,α, for all x, y ∈ I.

Writting y by y + z, z ∈ I in above expression, we get

[d (x) , d (y) + 2D(y, z) + d(z)]α,α ± [x, y + z]α,α ∈ Cα,α,

and so

[d (x) , d (y)]α,α + 2[d(x), D(y, z)]α,α + [d(x), d(z)]α,α±[x, y]α,α ± [x, z]α,α ∈ Cα,α.

Using the hypothesis and R is 2−torsion free, we obtain that

[d(x), D(y, z)]α,α ∈ Cα,α, for all x, y, z ∈ I.

Taking z by y in this expression, we get

[d(x), D(y, y)]α,α ∈ Cα,α, for all x, y ∈ I.

That is
[d(x), d(y)]α,α ∈ Cα,α, for all x, y ∈ I.

Using this expression in the hypothesis, we have

[x, y]α,α ∈ Cα,α, for all x, y ∈ I.

Hence, we conclude that R contains a nonzero central ideal by Lemma 2.4.
This completes the proof. �

Theorem 2.8. Let R be a 2−torsion free semiprime ring, I a nonzero ideal
of R, D : R×R → R a symmetric bi-(α, α)-derivation and d be the trace of D
and α an automorphism. If d((x ◦ y)α,α) ± (x ◦ y)α,α ∈ Cα,α, for all x, y ∈ I,
then R contains a nonzero central ideal.
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Proof. We get

d((x ◦ y)α,α) ± (x ◦ y)α,α ∈ Cα,α, for all x, y ∈ I.

Replacing y by y + z, z ∈ I in this expression, we have

d((x ◦ y)α,α)+d((x ◦ z)α,α)+2D((x ◦ y)α,α , (x ◦ z)α,α)±(x ◦ y)α,α±(x ◦ z)α,α ∈ Cα,α.

Applying the hypothesis, we obtain that

2D((x ◦ y)α,α , (x ◦ z)α,α) ∈ Cα,α.

Writting z by y, we have

d((x ◦ y)α,α) ∈ Cα,α, for all x, y ∈ I.

Using this equation in our hypothesis, we see that

(x ◦ y)α,α ∈ Cα,α, for all x, y ∈ I.

By Lemma 2.5, we conclude that R contains a nonzero central ideal. This
completes the proof. �

Theorem 2.9. Let R be a 2−torsion free semiprime ring, I a nonzero ideal
of R, α an automorphism, D : R×R → R a symmetric bi-(α, α)-derivation, d
be the trace of. If (d (x) ◦ d (y))α,α ± (x ◦ y)α,α ∈ Cα,α for all x, y ∈ I, then R
contains a nonzero central ideal.

Proof. By the hypothesis, we get

(d(x) ◦ d(y))α,α ± (x ◦ y)α,α ∈ Cα,α, for all x, y ∈ I.

Taking y by y + z, z ∈ I in the hypothesis, we see that

(d(x) ◦ d(y))α,α+(d(x) ◦ d(z))α,α+2 (d(x) ◦ D(y, z))α,α±(x ◦ y)α,α±(x ◦ z)α,α ∈ Cα,α.

Appliying the hypothesis and R is 2−torsion free ring, we get

(d(x) ◦D(y, z))α,α ∈ Cα,α, for all x, y, z ∈ I.

Replacing z by y, we have

(d(x) ◦ d(y))α,α ∈ Cα,α, for all x, y ∈ I.

From our hypothesis, we see that

(x ◦ y)α,α ∈ Cα,α, for all x, y ∈ I.

By Lemma 2.5, we have R contains a nonzero central ideal. The proof is
completed. �
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Theorem 2.10. Let R be a 2−torsion free semiprime ring, I a nonzero ideal
of R, α an automorphism, D : R × R → R a symmetric bi-(α, α)-derivation
and d be the trace of D. If d((x ◦ y)α,α) ± [x, y]α,α ∈ Cα,α, for all x, y ∈ I,
then R contains a nonzero central ideal.

Proof. By the hypothesis, we get

d((x ◦ y)α,α) ± [x, y]α,α ∈ Cα,α, for all x, y ∈ I.

Taking y by y + z, z ∈ I, we have

d((x ◦ y)α,α)+d((x ◦ z)α,α)+2D((x ◦ y)α,α , (x ◦ z)α,α)±[x, y]α,α±[x, z]α,α ∈ Cα,α.

Using the hypothesis, we find that

2D((x ◦ y)α,α , (x ◦ z)α,α) ∈ Cα,α, for all x, y, z ∈ I.

Since R is 2−torsion free and replacing z by y in this expression, we have

D((x ◦ y)α,α , (x ◦ y)α,α) ∈ Cα,α, for all x, y ∈ I,

and so,
d((x ◦ y)α,α) ∈ Cα,α, for all x, y ∈ I.

By our hypothesis, we see that

[x, y]α,α ∈ Cα,α, for all x, y ∈ I.

We obtain that R contains a nonzero central ideal by Lemma 2.4. �

Theorem 2.11. Let R be a 2−torsion free semiprime ring, I a nonzero ideal
of R, α an automorphism, D : R × R → R a symmetric bi-(α, α)-derivation
and d be the trace of D. If (d(x) ◦ d(y))α,α ± [x, y]α,α ∈ Cα,α, for all x, y ∈ I,
then R contains a nonzero central ideal.

Proof. We get

(d(x) ◦ d(y))α,α ± [x, y]α,α ∈ Cα,α, for all x, y ∈ I.

Writting y by y + z, z ∈ I, we have

(d(x) ◦ d(y))α,α+(d(x) ◦ d(z))α,α+2 (d(x) ◦ D(y, z))α,α±[x, y]α,α±[x, z]α,α ∈ Cα,α.

Applying the hypothesis and R is 2−torsion free, we obtain that

(d(x) ◦ D(y, z))α,α ∈ Cα,α, for all x, y, z ∈ I.

Taking z by y in the last expression, we have

(d(x) ◦ d(y))α,α ∈ Cα,α, for all x, y ∈ I.
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Using this equation in our hypothesis, we see that

[x, y]α,α ∈ Cα,α, for all x, y ∈ I.

By Lemma 2.4, we obtain that R contains a nonzero central ideal. This com-
pletes the proof. �

Theorem 2.12. Let R be a 2−torsion free semiprime ring, I a nonzero ideal
of R, α an automorphism, D : R × R → R a symmetric bi-(α, α)-derivation
and d be the trace of D. If d([x, y]α,α) ± (x ◦ y)α,α ∈ Cα,α, for all x, y ∈ I,
then R contains a nonzero central ideal.

Proof. We get

d([x, y]α,α) ± (x ◦ y)α,α ∈ Cα,α, for all x, y ∈ I.

Replacing y by y + z, z ∈ I in this expression, we have

d([x, y]α,α)+d([x, y]α,α)+2D([x, y]α,α , [x, z]α,α)±(x ◦ y)α,α±(x ◦ z)α,α ∈ Cα,α.

By the hypothesis, we get

2D([x, y]α,α , [x, z]α,α) ∈ Cα,α, for all x, y, z ∈ I.

Since R is 2−torsion free and taking z by y in the above expression, we have

d([x, y]α,α) ∈ Cα,α, for all x, y ∈ I.

Our hypothesis reduces that

(x ◦ y)α,α ∈ Cα,α, for all x, y ∈ I.

By Lemma 2.5, we conclude that R contains a nonzero central ideal. �

Theorem 2.13. Let R be a 2−torsion free semiprime ring, I a nonzero ideal
of R, α an automorphism, D : R × R → R a symmetric bi-(α, α)-derivation
and d be the trace of D. If [d (x) , d (y)]α,α± (x ◦ y)α,α ∈ Cα,α, for all x, y ∈ I,
then R contains a nonzero central ideal.

Proof. Using our hypothesis, we have

[d (x) , d (y)]α,α ± (x ◦ y)α,α ∈ Cα,α, for all x, y ∈ I.

Writting y by y + z and R is 2−torsion free, we get

[d (x) , d (y)]α,α+2 [d(x), D(y, z)]α,α+[d(x), d(z)]α,α±(x ◦ y)α,α±(x ◦ z)α,α ∈ Cα,α.

Using the hypothesis, we have

[d(x), D(y, z)]α,α ∈ Cα,α, for all x, y, z ∈ I.
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Taking z by y in this expression, we find that

[d(x), D(y, y)]α,α ∈ Cα,α, for all x, y ∈ I,

and so
[d(x), d(y)]α,α ∈ Cα,α, for all x, y ∈ I.

By our hypothesis, we have

(x ◦ y)α,α ∈ Cα,α, for all x, y ∈ I.

We get the required result by Lemma 2.5. �

Theorem 2.14. Let R be a 2−torsion free semiprime ring, I a nonzero ideal
of R, α an automorphism, D : R × R → R a symmetric bi-(α, α)-derivation
and d be the trace of D. If d (x) d (y) ± [x, y]α,α ∈ Cα,α for all x, y ∈ I, then
R contains a nonzero central ideal.

Proof. We get

d (x) d (y) ± [x, y]α,α ∈ Cα,α, for all x, y ∈ I.

Taking y by y + z, z ∈ I, we have

d (x) (d (y) + 2D(y, z) + d(z)) ± [x, y]α,α ± [x, z]α,α ∈ Cα,α, for all x, y, z ∈ I.

By the hypothesis, we obtain that

2d(x)D(y, z) ∈ Cα,α, for all x, y, z ∈ I.

Since R is 2−torsion free, we get

d(x)D(y, z) ∈ Cα,α, for all x, y, z ∈ I.

Replacing z by y in the last expression, we see that

d(x)d(y) ∈ Cα,α, for all x, y ∈ I.

Using the hypothesis, we have

[x, y]α,α ∈ Cα,α, for all x, y ∈ I.

By Lemma 2.4, we obtain that R contains a nonzero central ideal. �

Theorem 2.15. Let R be a 2−torsion free semiprime ring, I a nonzero ideal
of R, α an automorphism, D : R × R → R a symmetric bi-(α, α)-derivation
and d be the trace of D. If d (x) d (y) ± (x ◦ y)α,α ∈ Cα,α for all x, y ∈ I, then
R contains a nonzero central ideal.
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Proof. We see that

d (x) d (y) ± (x ◦ y)α,α ∈ Cα,α, for all x, y ∈ I.

Taking y by y + z, z ∈ I, we have

d (x) (d (y)+2D(y, z)+d(z))± (x ◦ y)α,α ± (x ◦ z)α,α ∈ Cα,α, for all x, y, z ∈ I.

By the hypothesis, we obtain that

2d(x)D(y, z) ∈ Cα,α, for all x, y, z ∈ I.

Since R is 2-torsion free, we have

d(x)D(y, z) ∈ Cα,α, for all x, y, z ∈ I.

Writting z by y in the last equation, we get

d(x)d(y) ∈ Cα,α, for all x, y ∈ I.

Using this in our hypothesis, we find that

(x ◦ y)α,α ∈ Cα,α, for all x, y ∈ I.

We conclude that R contains a nonzero central ideal by Lemma 2.5. The proof
is completed. �

Theorem 2.16. Let R be a 2−torsion free semiprime ring, I a nonzero ideal
of R, α an automorphism, D : R × R → R a symmetric bi-(α, α)-derivation,
d be the trace of D and α(I) ⊂ I. If [d (x) , y]α,α ∈ Cα,α, for all x, y ∈ I, then
[d (x) , x]α,α = 0, for all x ∈ I.

Proof. By the hypothesis, we get

[d(x), y]α,α ∈ Cα,α, for all x, y ∈ I.

Replacing y by yz in the hypothesis, we have

[d(x), y]α,α α(z) + α(y) [d(x), z]α,α ∈ Cα,α, for all x, y, z ∈ I.

Commuting this term with r, r ∈ R, we get
[
[d(x), y]α,α α(z) + α(y) [d(x), z]α,α , r

]
α,α

= 0.

Expanding this equation and using the hypothesis, we arrive at

[d(x), y]α,α [α(z), α(r)] + [α(y), α(r)] [d(x), z]α,α = 0, for all x, y, z ∈ I, r ∈ R.
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Replacing r by z in the last equation, we obtain that

[α(y), α(z)] [d(x), z]α,α = 0, for all x, y, z ∈ I.

Taking y by ty, t ∈ R in above equation, we see that

[α(t), α(z)]α(y) [d(x), z]α,α = 0, for all x, y, z ∈ I, r, t ∈ R.

Since α is an automorphism, we have

[t, α(z)]α(y) [d(x), z]α,α = 0, for all x, y, z ∈ I, r, t ∈ R.

That is,

[t, z]α,α α(y) [d(x), z]α,α = 0, for all x, y, z ∈ I, r, t ∈ R.

Replacing t by d(x), we get

[d(x), z]α,α α(y) [d(x), z]α,α = 0, for all x, y, z ∈ I.

This implies that

[d(x), z]α,α V [d(x), z]α,α = 0, for all x, y, z ∈ I,

where α(I) = V is a nonzero ideal. By Lemma 2.2, we have

[d(x), z]α,α = 0, for all x, z ∈ I.

In particular, we get [d(x), x]α,α = 0, for all x ∈ I. The proof is completed. �

Theorem 2.17. Let R be a 2−torsion free semiprime ring, I a square-closed
Lie ideal of R, α an automorphism, D : R × R → R a symmetric bi-(α, α)-
derivation, d be the trace of D and α(I) ⊂ I. If d

(
[x, y]α,α

)
± [d(x), y]α,α ∈

Cα,α, for all x, y ∈ I, then [d(x), x]α,α = 0, for all x ∈ I.

Proof. By the hypothesis, we have

d
(
[x, y]α,α

)
± [d(x), y]α,α ∈ Cα,α, for all x, y ∈ I.

Writting y by y + z, z ∈ I, we get

d
(
[x, y]α,α

)
+d([x, z]α,α)+2D([x, y]α,α , [x, z]α,α)±[d(x), y]α,α±[d(x), z]α,α ∈ Cα,α.

Using the hypothesis and R is 2−torsion free, we see that

D([x, y]α,α , [x, z]α,α) ∈ Cα,α, for all x, y ∈ I.
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Replacing y by z in the last expression, we have

D([x, y]α,α , [x, y]α,α) ∈ Cα,α, for all x, y ∈ I.

That is,
d([x, y]α,α) ∈ Cα,α, for all x, y ∈ I.

From our hypothesis, we have

[d(x), y]α,α ∈ Cα,α, for all x, y ∈ I.

By Theprem 2.16, we conclude that [d(x), y]α,α = 0, for all x, y ∈ I. In partic-
ular, we get [d(x), x]α,α = 0, for all x ∈ I. The proof is completed. �

Theorem 2.18. Let R be a 2−torsion free semiprime ring, I a nonzero ideal
of R, α an automorphism, D : R × R → R a symmetric bi-(α, α)-derivation, d

be the trace of D and α(I) ⊂ I. If d
(
(x ◦ y)α,α

)
± [d(x), y]α,α ∈ Cα,α , for all

x, y ∈ I, then [d(x), x]α,α = 0, for all x ∈ I.

Proof. We assume that

d
(
(x ◦ y)α,α

)
± [d(x), y]α,α ∈ Cα,α, for all x, y ∈ I.

Replacing y by y + z, z ∈ I, we get

d
(
(x ◦ y)α,α

)
+d

(
(x ◦ z)α,α

)
+2D((x ◦ y)α,α , (x ◦ z)α,α)±[d(x), y]α,α±[d(x), z]α,α ∈ Cα,α.

Using the hypothesis and R is 2−torsion free, we have

D((x ◦ y)α,α , (x ◦ z)α,α) ∈ Cα,α.

Writting y by z in the last expression, we get

D((x ◦ y)α,α , (x ◦ y)α,α) ∈ Cα,α, for all x, y ∈ I,

and so,

d
(
(x ◦ y)α,α

)
∈ Z, for all x, y ∈ I.

Using this equation in our hypothesis, we find that

[d(x), y]α,α ∈ Cα,α, for all x, y ∈ I.

We conclude that [d(x), y]α,α = 0, for all x, y ∈ I by Theorem 2.16. In partic-
ular, we get [d(x), x]α,α = 0, for all x ∈ I. The proof is completed. �
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