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Abstract

Necessary and sufficient conditions for the existence of Group divis-
ible designs with two associate classes and λ2 = 5 are here considered.
We find that the necessary conditions, derived from graph theoretic con-
ditions, are sufficient as well. We present some constructions to prove
sufficiency.

1 Introduction

A pairwise balanced design is an ordered pair (S,B), denoted PBD(S,B), where
S is a finite set of symbols and B is a collection of subsets of S called blocks,
such that each pair of distinct elements of S occurs together in exactly one
block of B. Here |S| = v is called the order of the PBD. Note that there is no
condition on the size of the blocks in B. If all blocks are of the same size k, then
we have a Steiner system S(v, k). A PBD with index λ can be defined similarly:
each pair of distinct elements occurs in λ blocks. If all blocks are same size, say
k, then we get a balanced incomplete block design BIBD(v, b, r, k, λ). In other
words, a BIBD(v, b, r, k, λ) is a set S of v elements together with a collection
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58 Group divisible designs with two associate classes and λ2 = 5

of b k-subsets of S, called blocks, where each point occurs in r blocks and each
pair of distinct elements occurs in exactly λ blocks (see [2], [3], [4]).

Note that in a BIBD(v, b, r, k, λ) the parameters must satisfy the necessary
conditions:

1. vr = bk and

2. λ(v − 1) = r(k − 1).

With these conditions a BIBD(v, b, r, k, λ) is usually written as BIBD(v, k, λ).
A group divisible design GDD(v = v1 + v2 + · · · + vg, g, k, λ1, λ2) is a col-

lection of k-subsets (called blocks) of a v-set of symbols, where the v-set is
divided into g groups of size v1, v2, . . . , vg; each pair of symbols from the
same group occurs in exactly λ1 blocks; and each pair of symbols from dif-
ferent groups occurs in exactly λ2 blocks (see [2], [3]). In this paper we
consider the problem of determining necessary conditions for an existence of
GDD(v = m + n, 2, 3, λ1, λ2) and prove that the conditions are sufficient for
some infinite families. Since we are dealing on GDDs with two groups and
block size 3, we will use GDD(m, n, λ1, λ2) for GDD(v = m + n, 2, 3, λ1, λ2)
from now on, and we refer to the blocks as triples. We denote (X; Y,B) for a
GDD(m, n, λ1, λ2) if X and Y are m-set and n-set, respectively. Chaiyasena,
et al [1] have written the first paper in this direction, followed by Pabhapote
and Punnim [5]. In particular the first paper [1] completely solved the prob-
lem of determining all pairs of integers (n, λ) in which a GDD(1, n, 1, λ) exists,
while the second paper [5] found all triples of integers (m, n, λ) in which a
GDD(m, n, λ, 1) exists. We continue to investigate in this paper all triples of
integers (m, n, λ) in which a GDD(m, n, λ, 5) exists, where λ ≥ 5. Surpris-
ingly, this problem can be solved using just λ−fold triple system construc-
tions, GDD(1, v, 1, λ) in [1], and GDD(m, n, λ, 1) in [5] as building blocks.
There seems to be no need to consider GDD(m, n, λ, 2), GDD(m, n, λ, 3) nor
GDD(m, n, λ, 4).

Necessary conditions on the existence of a GDD(m, n, λ1, λ2) can be ob-
tained from a graph theoretic point of view as follows. Let λKv denote the
graph on v vertices in which each pair of vertices is joined by λ edges. Let
G1 and G2 be graphs. The graph G1 ∨λ G2 is formed from the union of
G1 and G2 by joining each vertex in G1 to each vertex in G2 with λ edges.
A G-decomposition of a graph H is a partition of the edges of H such that
each element of the partition induces a copy of G. Thus the existence of a
GDD(m, n, λ1, λ2) is easily seen to be equivalent to the existence of a K3-
decomposition of λ1Km ∨λ2 λ1Kn. The graph λ1Km ∨λ2 λ1Kn is of or-
der m + n and size λ1[

(
m
2

)
+

(
n
2

)
] + λ2mn. It contains m vertices of degree

λ1(m− 1) + λ2n and n vertices of degree λ1(n− 1) + λ2m. Thus the existence
of a K3-decomposition of λ1Km ∨λ2 λ1Kn implies

1. 3 | λ1[
(
m
2

)
+

(
n
2

)
] + λ2mn, and
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2. 2 | λ1(m − 1) + λ2n and 2 | λ1(n − 1) + λ2m.

2 Preliminaries

The following notation will be used for our constructions.

1. Let V be a v-set. We use K(V ) for the complete graph Kv on the vertex
set V .

2. Let V be a v-set. Then there may be many different STS(v)s that can
be constructed on the set V . Let STS(V ) be defined as

STS(V ) = {B : (V,B) is an STS(v)}.

BIBD(V, 3, λ) can be defined similarly, That is:

BIBD(V, 3, λ) = {B : (V,B) is a BIBD(v, 3, λ)}.

Let X and Y be disjoint sets of cardinality m and n, respectively. We
define GDD(X, Y, λ1, λ2) as

GDD(X, Y, λ1, λ2) = {B : (X; Y,B) is a GDD(m, n, λ1, λ2)}.

3. When we say that B is a collection of subsets (blocks) of a v-set V , B
may contain repeated blocks. Thus “∪ ” in our construction will be used
for the union of multi-sets.

4. Finally, if we have a set X, the number of members or vertices of X shall
be denoted by |X|.

The following results on existence of λ-fold triple systems are well known
(see e.g. [4]).

Theorem 2.1. Let n be a positive integer. Then a BIBD(n, 3, λ) exists if and
only if λ and n are in one of the following cases:

(a) λ ≡ 0 (mod 6) and for all positive integers n �= 2,

(b) λ ≡ 1 or 5 (mod 6) and for all n with n ≡ 1 or 3 (mod 6),

(c) λ ≡ 2 or 4 (mod 6) and for all n with n ≡ 0 or 1 (mod 3), and

(d) λ ≡ 3 (mod 6) and for all odd integers n.
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3 GDD(m,n, λ, 5)

Let λ be a positive integer. We consider in this section the problem of deter-
mining all pairs of integers (m, n) in which a GDD(m, n, λ, 5) exists. Recall
that the existence of GDD(m, n, λ, 5) implies 3 | λ[m(m− 1)+ n(n− 1)]+ mn,
2 | λ(m − 1) + n and 2 | λ(n − 1) + m. Let

S5(λ) := {(m, n) : a GDD(m, n, λ, 5) exists}.

Lemma 3.1. Let t be a non-negative integer:

(a) If (m, n) ∈ S5(6t+1), then there exist non-negative integers h and k such
that {m, n} ∈ {{6k + 1, 6h}, {6k, 6h+ 3}, {6k + 3, 6h + 4}}.

(b) If (m, n) ∈ S5(6t+2), then there exist non-negative integers h and k such
that {m, n} ∈ {{6k, 6h}, {6k + 2, 6h + 4}, {6k, 6k + 4}, {6k + 2, 6h + 2}.

(c) If (m, n) ∈ S5(6t+3), then there exist non-negative integers h and k such
that {m, n} ∈ {{6k, 6h + 1}, {6k, 6h + 3}, {6k + 2, 6h + 3), {6k + 4, 6h +
3}, {6k, 6h+ 5}}.

(d) If (m, n) ∈ S5(6t+4), then there exist non-negative integers h and k such
that {m, n} ∈ {{6k, 6h}, {6k, 6h+ 4}}

(e) If (m, n) ∈ S5(6t+5), then there exist non-negative integers h and k such
that {m, n} ∈ {{6k, 6h + 1}, {6k + 1, 6h + 2}, {6k + 3, 6h + 4), {6k, 6h +
3}, {6k + 2, 6h + 5}, {6k + 4, 6h + 5}}.

(f) If (m, n) ∈ S5(6t+6), then there exist non-negative integers h and k such
that {m, n} ∈ {{6k, 6h}, {6k, 6h+ 2}, {6k, 6h + 4}}.

Proof. The proof follows from solving the corresponding systems of congru-
ences. �

We now proceed with sufficiency for m and n not equal to 2. We note
that for simplicity, we only prove sufficiency for say, GDD(m, n, λ, 5), since
the case of GDD(n, m, λ, 5) can be dealt in an identical manner, simply by
switching the sets involved. For the sake of economy of space, we will prove
sufficiency for λ being the minimal value for the case involved. Once we have
a GDD(m, n, λ1, 5), we can readily extend to any λ1 + 6t by the following
technique.

Lemma 3.2. GDD(m, n, λ1, 5) can be extended to GDD(m, n, λ1+6t, 5), t ≥ 0,
provided neither m nor n is 2.



A. Chaiyasena and W. Lapchinda 61

Proof. We let X be an m-set and Y be an n-set. We consider (X; Y,B1) be-
ing a GDD(m, n, λ1, 5) as given. Let B2 ∈ BIBD(X, 3, 6) and B3 ∈ BIBD(Y, 3, 6).
Both BIBDs exist by Theorem 2.1[(a)], since neither m nor n is 2. Now let
B = B1 ∪B2∪B3. Then (X; Y,B) forms a GDD(m, n, λ1 +6t, 5) as required. �

Lemma 3.3. Let h and k be non-negative integers. Then (6k, 6h+1), (6k, 6h+
3), (6k + 3, 6h + 4) ∈ S5(6t + 1).

Proof Let (m, n) be such a pair from the list above. We want to con-
struct a GDD(m, n, 7, 5). Let X be an m−set and Y be an n−set. Then
BIBD(X∪Y, 3, 5) is not empty since |X∪Y | = m+n ≡ 1 or ≡ 3 (mod 6). (The-
orem 2.1[(b)]). Let B1 ∈ BIBD(X ∪ Y, 3, 5). Furthermore, BIBD(X, 3, 2) exists
since |X| = m ≡ 0 (mod 3) (Theorem 2.1[(c)]. So we let B2 ∈ BIBD(X, 3, 2).
Also BIBD(Y, 3, 2) exists as well since |Y | = n ≡ 0 or ≡ 1 (mod 3) (Theorem
2.1[c)]. So let B3 ∈ BIBD(Y, 3, 2). We now let B = B1∪B2∪B3. Then (X; Y,B)
forms a GDD(m, n, 7, 5) as desired. �

Lemma 3.4. Let h and k be non-negative integers. Then (6k, 6h), (6k +
2, 6h + 4), (6k, 6h + 4), (6k + 2, 6h + 2) ∈ S5(6t + 2).

Proof. Let (m, n) be such a pair from the list. We want to construct a
GDD(m, n, 8, 5). Let X be an m−set and Y be an n−set. Then there exists
BIBD(X ∪ Y, 3, 4) since |X ∪ Y | = m + n ≡ 1 or ≡ 0 (mod 3). (Theorem
2.1[(c)]). Let B1 ∈ BIBD(X ∪ Y, 3, 4). There exists GDD(X, Y, 4, 1) by [5].
Let B2 ∈ GDD(X, Y, 4, 1). We now let B = B1 ∪ B2. Then (X; Y,B) forms a
GDD(m, n, 8, 5) as desired. �

Lemma 3.5. Let h and k be non-negative integers. Then

(a) (6k, 6h + 1), (6k, 6h + 3), (6k + 3, 6h + 4) ∈ S5(6t + 3),

(b) (6k, 6h + 5) ∈ S5(6t + 3).

(c) (6k + 3, 6h + 2) ∈ S5(6t + 3).

Proof. (a) Let (m, n) be an ordered pair. We wish to construct GDD(m, n, 9, 5).
Let X be an m− set and Y be an n−set . There exists BIBD(X ∪ Y, 3, 5)
since |X ∪ Y | = m + n ≡ 1 or ≡ 3 (mod 6) ( Theorem 2.1[(b)]). Hence let
B1 ∈ BIBD(X ∪ Y, 3, 5). Also there exists BIBD(X, 3, 4) since |X| = m ≡ 0
(mod 3) (Theorem 2.1[(c)]). Let B2 ∈ BIBD(X, 3, 4). Finally there exists
BIBD(Y, 3, 4) since |X| = m ≡ 0 or ≡ 1 (mod 3) (Theorem 2.1[(c)]). Let
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B3 ∈ BIBD(Y, 3, 4). Now let B = B1 ∪ B2 ∪ B3 . Then (X; Y,B) forms a
GDD(m, n, 9, 5).

(b) Suppose we want GDD(6k, 6h + 5, 9, 5). Let Xk be a 6k-set and Yh

be a 6h + 5-set containing the element a. Furthermore, let Y ′
h = Yh − {a}.

There exists BIBD(Xk ∪ Y ′
h, 3, 4) since |Xk ∪ Y ′

h| = 6k + 6h + 4 ≡ 1 (mod 3)
(Theorem 2.1[(c)]). Hence let B1 ∈ BIBD(Xk ∪ Y ′

h, 3, 4). Also there exists
GDD(Xk, Y ′

h, 2, 1) by [5]. Let B2 ∈ GDD(Xk, Y ′
h, 2, 1). We have the existence

of GDD(Xk, {a}, 1, 5) since |Xk| = 6k ([1]). Let B3 ∈ GDD(Xk, {a}, 1, 5).
Now we have BIBD(Xk, 3, 2) since |Xk| ≡ 0 (mod 3) (Theorem 2.1[(c)]). Let
B4 ∈ BIBD(Xk, 3, 2). Finally, we have GDD({a}, Y ′

h, 1, 9) since |Y ′
h| = 6h+4 ≡

4 (mod 6) ([1]). Let B5 ∈ GDD({a}, Y ′
h, 1, 9). Now we have BIBD(Y ′

h , 3, 2)
since |Y ′

h| ≡ 1 (mod 3) (Theorem 2.1[(c)]). Let B6 ∈ BIBD(Y ′
h, 3, 2). Now let

B = B1 ∪B2 ∪B3 ∪B4 ∪ B5 ∪B6. Then (Xk; Yh,B) forms GDD(6k, 6h+ 5, 9, 5)
as required.

(c) We want to construct GDD(6k + 3, 6h + 2, 9, 5). Let Xk be a 6k + 3-
set and Yh be a 6h + 2-set containing the element a. Let Y ′

h = Yh − {a}.
There exists BIBD(Xk ∪ Yh, 3, 3) since |Xk ∪ Yh| = 6k + 6h + 5 is an odd
number (Theorem 2.1[(d)]). (Note that Yh, not Y ′

h is used here.) Hence let
B1 ∈ BIBD(Xk ∪ Yh, 3, 3). We also have BIBD(Xk ∪ Y ′

h, 3, 2) since |Xk ∪ Y ′
h| =

6k +4 ≡ 1 (mod 3) (Theorem 2.1[(c)]. Let B2 ∈ BIBD(Xk ∪Y ′
h, 3, 2). We have

the existence of GDD(Xk, {a}, 1, 2) since |Xk| = 6k + 3 ≡ 3 (mod 6) ([1]). Let
B3 ∈ GDD(Xk, {a}, 1, 2). We also have GDD(Y ′

h, {a}, 1, 6) since |Y ′
h| = 6h+1 ≡

1 (mod 6) ([1]). Let B4 ∈ GDD(Y ′
h, {a}, 1, 6). There exists BIBD(Xk , 3, 3)

since |Xk| ≡ 1 (mod 6). Let B5 ∈ BIBD(Xk, 3, 3). Finally, there exists
BIBD(Y ′

h, 3, 3) since |Y ′
h| ≡ 1 (mod 6). Let B6 ∈ BIBD(Y ′

h, 3, 3). Now let
B = B1∪B2∪B3∪B4∪B5∪B6. Then (Xk; Yh,B) forms GDD(6k+3, 6h+2, 9, 5)
as required. �

Lemma 3.6. Let h and k be non-negative integers. Then (6k, 6h), (6k, 6h +
4) ∈ S5(6t + 4),

Proof. Let (m, n) be one of the ordered pairs delineated. We wish to con-
struct GDD(m, n, 10, 5). Let X be an m− set and Y be an n−set. There exists
BIBD(X∪Y, 3, 4) since |X∪Y | = m+n ≡ 0 or ≡ 1 (mod 3).( Theorem 2.1[(c)]).
Hence let B1 ∈ BIBD(X ∪ Y, 3, 4). There also exists GDD(X, Y, 2, 1) by The-
orem [5]. Let B2 ∈ GDD(X, Y, 2, 1). We have BIBD(Y, 3, 4) since |Y | ≡ 0
or 1 (mod 3) (Theorem 2.1[(c)]). Let B3 ∈ BIBD(Y, 3, 4). Finally we also
have BIBD(X, 3, 4) for the same reason. Let B4 ∈ BIBD(X, 3, 4). Now let
B = B1 ∪ B2 ∪ B3 ∪ B4. Then (Xk; Yh,B) forms GDD(m, n, 10, 5) as required.
�

Lemma 3.7. Let h and k be non-negative integers. Then (6k, 6h + 1), (6k +
1, 6h+2), (6k+3, 6h+4), (6k, 6h+3), (6k+2, 6h+5), (6k+4, 6h+5)∈ S3(6t+5).
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Proof. Let (m, n) be such an ordered pair. We want to build GDD(m, n, 11, 5).
To this end, let X be an m−set and Y be an n−set. Then BIBD(X ∪ Y, 3, 5)
exists since |X ∪ Y | ≡ 0 or ≡ 1 (mod 6) (Theorem 2.1[(b)]). Let B1 ∈
BIBD(X ∪ Y, 3, 5). We also have the existence of BIBD(X, 3, 6) since |X| �= 2
(Theorem 2.1[(a)]). So let B2 ∈ BIBD(X, 3, 6). Also BIBD(Y, 3, 6) exists for
the same reasons. So let B3 ∈ BIBD(Y, 3, 6). We now let B = B1 ∪ B2 ∪ B3.
Then (X, Y ;B) forms a GDD(m, n, 11, 5) as desired. �

Lemma 3.8. Let h and k be non-negative integers. Then

(a) (6k, 6h), (6k, 6h+ 4) ∈ S5(6t + 6).

(b) (6k, 6h + 2) ∈ S5(6t + 6).

Proof. (a) Let (m, n) be such an ordered pair. We wish to construct
GDD(m, n, 6, 5). Let X be an m− set and Y be an n−set. There exists
BIBD(X ∪ Y, 3, 4) since |X ∪ Y | = m+ n ≡ 0 or 1 (mod 3)( Theorem 2.1[(c)]).
Hence let B1 ∈ BIBD(X ∪ Y, 3, 4). There also exists GDD(X, Y, 2, 1) by [5].
Let B2 ∈ GDD(X, Y, 2, 1). Now let B = B1 ∪ B2. Then (Xk; Yh,B) forms
GDD(m, n, 6, 5) as required. �

(b) We construct GDD(6k, 6h + 2, 6, 5). Let Xk be a 6k−set and Yh be
a 6h + 2−set containing a. Let Y ′

h = Yh − {a}. Then BIBD(Xk ∪ Y ′
h, 3, 5)

exists since |Xk ∪ Y ′
h| = 6k + 6h + 1 ≡ 1 (mod 6) (Theorem 2.1[(b)]). Let

B1 ∈ BIBD(Xk∪Y ′
h, 3, 5). Also there exists GDD(Xk, {a}, 1, 5) since |Xk| = 6k

([1]). We let B2 ∈ GDD((Xk, {a}, 1, 5). Finally, there exists GDD(Y ′
h, {a}, 1, 6)

since |Y ′| = 6h + 1 ≡ 1 (mod 6) ( [1]). We let B3 ∈ GDD((Y ′
h, {a}, 1, 6). Now

let B = B1 ∪ B2 ∪ B3. Then (X; Y,B) forms a GDD(6k, 6h+ 2, 6, 5) as desired.

4 Conclusion

We can now present our main result:

Theorem 4.1. Let m and n be positive integers with m �= 2 or n �= 2. There
exists a GDD(m, n, λ, 5) if and only if

1. 3 | λ[m(m − 1) + n(n − 1)] + mn, and

2. 2 | λ(m − 1) + n and 2 | λ(n − 1) + m.

Proof. The proof follows from Lemmas 3.1 - 3.8. �
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