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Abstract

For a near-ring R we introduce the notion of an s—prime R—module
and an s—system. We show that an R—ideal P is an s—prime R—ideal
if and only if R\P is an s—system. For an R—ideal N of the near-ring
module M we define S(N) =: {m € M: every s—sytem containing m
meets N} and prove that it coincides with the intersection of all the
s—prime R—ideals of M containing N. S(0) is an upper nil radical of
the near-ring module. Furthermore, we define a 7 —special class of near-
ring modules and then show that the class of s—prime modules forms
a T —special class. 7 —special classes of s—prime near-ring modules are
then used to describe the 2-s-prime radical of a near-ring.

1 Introduction

In 1961 Andrunakievi¢ [1] introduced the notion of a prime module zM over an
associative ring R and then used the notion of a prime module to characterize
the prime radical of the ring R. In 1964 Andrunakievi¢ and Rjabuhin [3] used
the notion of a prime module to define special classes of modules and then used
the notion of a special class of R—modules to characterize special classes of rings
and special radicals. In 1978 Dauns [8] was the first to do a detailed study of
prime modules. The notion of a prime near-ring module was briefly introduced
by Beidleman in 1967 in [5]. Later equiprime, strongly prime and different
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types of prime near-ring modules were introduced by Booth and Groenewald
[9] and also by Groenewald, Juglal and Lee [13].

2 Prime and s—prime near-rings

For the near-ring R and a subset K of R, (K |gr, | K)r, (K)r, (K]|g and [K)r
denote the left ideal, right ideal, two-sided ideal, left R—subgroup and right
R—subgroup generated by K in R respectively. If it is clear in which near-ring
we are working, the subscript R will be omitted. Also K <y R, K<, R, K <R
and K <p R symbolize that K is a left ideal, right ideal, two-sided ideal or a
left R—subgroup of R.

Definition 2.1. Let R be a near-ring (not necessarily zero-symmetric) and P
an ideal of R.

1. P is a O-prime ideal if for every A, B << R, AB C P implies A C P or
B C P (this is the same as the usual definition for a prime ideal in a
ring).

2. Pisa2—prime ideal if for every A and B left R-subgroups of R, AB C P
implies A C P or BC P.

R is called an i-prime near ring (i = 0, 2) if the zero ideal is an i-prime ideal.

Let M be any class of near-rings and p a mapping which assigns to each
near-ring R an ideal p(R) of R. If p(R) = N{I < R : R/I € M}, then p is a
Hoehnke radical (H-radical), called the H-radical associated with the class M.
In [19] van der Walt defined the notion of an s-prime near-ring and showed
that the Hoehnke radical determined by the class of all s-prime near-rings is
the same as the upper nil radical. Hence if R is a near-ring then N'(R) i.e.,
the sum of all nil ideals of R is equal to s(R) the intersection of all the s-
prime ideals of R (all ideals I such that R/l is an s-prime near-ring). In [16]
Kaarli observed that the nil radical N'(R) of the near-ring R is equal to the
intersection of all the O-prime ideals P of R such that R/P has no nonzero nil
ideals. He mentioned that the proof of this result is essentially that given for
rings by Divinsky, see [7, page 147]. In [6] Birkenmeier et al called an ideal I of
the near-ring R nilprime if I is a O-prime ideal and N(R/I) = 0 i.e., R/I has
no nonzero nil ideals. They then gave a selfcontained proof within near-ring
theory of the above result mentioned by Kaarli. In [6] it was proved that every
s-prime near-ring is a nilprime near-ring.

Definition 2.2. [11, Definition 3.1] A near-ring is i-nilprime if R is i-prime
and R contains no nonzero nil ideals and 7 € {0, 2}.
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From [11, Theorem 2.7 and Proposition 2.12] we have that the upper nil
radical of the near-ring R is equal to the intersection of all the O—nilprime
ideals.

If R is an associative ring, this coincides with the notion prime nil-semisimple
rings and the upper radical determined by this class of rings coincides with the
nilradical A'(R). In the case of near-rings this give rise to nonequivalent nil-
radicals.

Example 2.3. [11, Example 3.2]Let G be a finite group and let 0 # H be
a proper subgroup of G. Let R = {a € My(G) : a(H) C H}. Then R is a
zero-symmetric near-ring. R is O-nilprime but not 2-nilprime.

Definition 2.4. [11, Definition 4.1] A subset T' of the near-ring R is called a
complete system if a™ € T for every a € T and every n € N.

If a,b € R we will use the following notation:
i | (a)(b) ifi=0

[a]" [o] _{ <alp<blp ifi=2

Note that an ideal Q of R is i-prime, i € {0,2}, if for a,b € R, [a]" [b]' € Q
implies a € Q or b € Q.
Definition 2.5. [11, Definition 4.2] A subset Z C R is called an i — s-system,
i € {0,2}, if Z contains a complete system U such that for every t1,%; € Z, it
follows that [t1]" [t]' NU # @.
Definition 2.6. [11, Definition 4.3] An ideal @ is called i — s-prime, i € {0, 2},
if for a,b € R and for all z € [a]" [b]', 2™ € Q for some m implies a € Q or
beqQ.
Proposition 2.1. [11, Proposition 4.4] An ideal Q of R is i — s-prime, i €
{0,2}, if and only if Cr (Q) is an i — s-system where Cr (Q) is the complement
of @ in R.
Proposition 2.2. [11, Proposition 4.5] An ideal Q of R isi — s-prime if and
only it is i—nilprime, i € {0,2}.

By a similar argument as in [11, Lemma 4.5] we get the following:
Lemma 2.7. Let V be a non-void 2 — s system in R and I an ideal of R

such that VNI = @. Then I is contained in a 2 — s-prime ideal P # R with
VNnP=0o.

Definition 2.8. The i — s-radical i € {0,2} of R, denoted by s;(R), consists
of all those elements r € R such that every i — s-system which contains 7 also
contains 0.

By a similar argument as in [11, Theorem 2.7] we get the following:

Theorem 2.9. The 2 — s-radical s3(R) of the near ring R is equal to the
intersection of all the 2 — s-prime ideals of R.
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3 Prime near-ring modules

Let R be a near-ring, M any left R—module and P a subset of M. If P is an
R—ideal ( R—submodule) of M we denote it by P <ig M ( P <p M). If it is
clear in which near-ring we are working, the subscript R will be omitted.

Definition 3.1. Let P be an R—ideal of an R—module M such that RM ¢
P. Then P is a prime R—ideal if for any ideal A of R and any submodule N of
M, AN C P implies AM C P or N C P. M is said to be a prime R—module
if RM # 0 and 0 is a prime R—ideal.

Example 3.2. Let R be a near-ring with identity and M an R—module with
no proper nonzero R—submodules, then M is a prime module.

Example 3.3. Let F be a field and R = F' x F. M = 0 x F has no proper
R—submodules and hence M is a prime module.

Example 3.4. Every R—module of M of type 2 is prime: Let A < R and
N < M such that AN = 0. If N = 0 then we are done. If N # 0, then N = M
and we have AM = 0.

Proposition 3.1. Let R be a zero symmetric near-ring. If M is an R—module
and P is an R—ideal of M, then the following are equivalent:

1. P is a prime R—ideal.

2. Foralla € R and m € M, {(a)ym C P implies (a)M C P or m € P where
(a) is the ideal of R generated by a.

3. Foralla € R and m € M, a(m)r C P impliesaM C P or m € P where
(m)YR is the submodule of M generated by m.

4. P=(P: M) is a2—prime ideal of R and (P : M) = (P : (m)g) for all
mé¢ P.

5 {(P:{m)r):me M\P} is a singleton.

Proof . 1. = 2. Let a € R and m € M such that (a)ym C P. Hence
(a)Rm C P. Since P is a prime R—ideal it follows that (a)M C P or Rm C P
ie. (a)M C P orm € P.

2. = 3. Let a € R and m € M such that a(m)r C P. Hence a € (P : (m)r)
and since (P : (m)g) is an ideal of R we have (a) C (P : (m)r). Now (a)m C P
and it follows from 2. that (a)M C P or m € P. Hence aM C P or m € P.

3. = 4. Let K and L be R—subgroups such that KL C (P : M). If L C
(P: M), then (P : M) is a 2—prime ideal of R. Suppose LM ¢ P, say lm ¢ P
for some | € L and m € M ie. (Im)g € P. Since K(lm)r C P, it follows
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from 3. that KM C P and we have we have K C (P : M). Hence, (P : M)
is a 2—prime ideal of R. To show that (P : M) = (P : (m)r), we only have
to show (P : (m)r) C (P : M). Let y € (P : (m)g). Since y(m)r C P and
m ¢ P, it follows from 3. that yM C P. Hence y € (P : M) and we have
(P:M)=(P: (mn).

4. = 5. This is clear.

5. = 1. Let A be an ideal of R and N a submodule of M such that AM ¢ P
and N ¢ P. We show that AN ¢ P. There exists m € M\P such that
A(m)r ¢ P, that is A € (P : (m)gr). Now, if n € N\P is arbitrary, we have
from 5. that A € (P : (n)g) = (P : (m)R), that is A(n)r ¢ P. Hence AN ¢ P
and therefore P is a prime R—ideal. O

Proposition 3.2. Let R be a zero symmetnc near-ring and let P<R. There is
a prime R—module M with (0 : M)r = P if and only if P is a 2—prime ideal
of R.

Proof. Let P be a 2—prime ideal of R and let M = R/P. M is an R—module
with the natural operation. Clearly, P C (0: M)g. Let a € (0 : M)g. Hence
a(r +P) =P for each r € R. Then, aR C P and since P is a 2—prime ideal,
we have a € P and P = (0 : M)g. RM # 0 for if RM = 0, then R?> C P
and since P is 2—prime ideal, we get R C P which is not possible. M is a
prime R—module. Let A <R and J < M such that AJ =0. Now J = L/P
for some left R—subgroup L of R containing P. Hence, AL C P and since
P is a 2—prime ideal we have A C P or L C P. Thus, AM =0or J =0
and we are through. Let M be a prime R—module and A, B < R such that
AB C (0 : M)g. Suppose B & (0 : M)g i.e. BM # 0. Then, there exists
m € M such that Bm # 0. Now ABm = 0 and also (4)Bm = 0. Since M is a
prime R—module, AM C (A)M = 0. Hence (0: M)g is a 2—prime ideal. O

Remark 3.5. The above proposition gives a method to construct prime R—modules.
For any 2—prime ideal P of R, M = R/P is a prime R—module.

4 s—prime R—modules

Definition 4.1. A proper R—ideal P of M with RM ¢ P is called an s—prime
R—ideal if the following is satisfied: If for every A < R and every N < M if
xr € Aand 2" N C P for some n € N, then N C P or AM C P. M is said to
be an s—prime R— module if RM # 0 and 0 is an s—prime R—ideal.

Example 4.2. Let R be the near-ring on Zs = {0, 1,2} with multiplication

a if b=2
defined by: a-b = 0 if b2
R. We also have R? # 0. Hence R is 2—prime. Furthermore we have 2" = 2
for every n € N. Thus M =g R is an s—prime module.

. The only R—subgroups of R are 0 and
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Example 4.3. Every type 2 R—module M is an s—prime R—module: Suppose
N # 0 and AM # 0 for some A<t R and N < gM. Since M is monogenic,
there exists m € M such that M = Rm. Now, since AM # 0, we have
0 # ARm C Am. Since Am is a submodule of M and M is of type 2, Am = M
and there exists @ € A such that am = m. Hence a*m = m for every k €
N. Consequently 0 # m € a*M = a*N for every k € N and therefore M is
S—prime

Example 4.4. A prime module which is not an s—prime module. We use the
construction and computation in [15, Example 1.2 and Proposition 1.3]. Let S

be a domain, n be a positive integer and R,, be the 2" by 2™ upper triangular
A

matrix ring over S. Define amap ¢ : R,, — R,11 by A — [ 0 1(4)1 ] . Then R,,
is considered as a subring of R,41 via 0. D,, = {Ry, 0nm}, with d,p =077 "
whenever n < m, is a direct system over I = {1,2,3,---,}. Let R = limR,
be the direct limit of D,,. From [15], R is a prime near-ring with N'(R) # 0.
Hence a prime near-ring which is not an s—prime near-ring. If we let M = gR,
then M is a prime R—module which is not an s—prime R—module.

Proposition 4.1. An R—ideal P <l M is s—prime if and only if:

1. P is a prime R—ideal.

2. for every A4 R such that A ¢ (P : M) there exists a € A\ (P : M) such
that a®M € P for alln € N.

Proof. (=).

1. Let AR, N < M such that AN C P. Hence for all z € A, we have
N C P. Since P is s—prime we have N C P or AM C P. Hence P is a prime
R—ideal.

2. Let B< R such that B ¢ (P: M), i.e. BM ¢ P. Let m € M such that
Bm ¢ P. Now, since P is an s—prime R-ideal, there exists b € B such that
b"Bm P for all n € N. Hence b"M ¢ P for every n € N.

(«<). Let AR and N < M. Suppose N & P and AM ¢ P. Let n € N
such that n ¢ P. Now, since P is prime, we have (P : M) = (P : (n)) is a
2-prime ideal. From 2., there exists a € A such that a* M ¢ P for every k € N.
Hence a* ¢ (P : M) = (P : (n)) for very k € N. Thus a*(n) ¢ P and a*N ¢ P
for every k € N, so P is an s—prime R -ideal. O

Corollary 4.5. An R—ideal P <l M is s—prime if and only if

(a) P is a prime R—ideal and

(b) R/(P : M) contains no nonzero nil ideals i.e. N(R/(P : M)) =0 where
N (R) is the upper nil radical of the near-ring R.
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Proposition 4.2. If R is a commutative or an Artinian near-ring, then an
R—ideal P <igp M 1s s—prime if and only if P is prime.

Proof. Suppose P <igp M is a prime R—ideal of M. From Proposition 3.1 we
have (P : M) a 2-prime ideal and therefor also a 0-prime ideal of R. Ifp(R) denotes
the 0—prime radical of the near-ring R then 0 = p(R/(P : M)) = N(R/(P :
M)) and from Corollary 4.5 we have P is s—prime. The converse is clear. O

Proposition 4.3. Let M be an R—module. For a proper R—ideal P <ip M,
the following statements are equivalent:

1. P is an s—prime R—ideal of M ;

2. for every a € R and for every m € M, if a™{m) C P for somen € N,
then m € P or (a)M C P;

3. P is a prime R—ideal and for every a € R such that aM ¢ P we have
that that a™M € P for every n € N;

4. P=(P: M) is a?2— s—prime ideal of R and (P : (m)) = P for every
m € M\ P.

Proof. 1. = 2. Suppose P is an s—prime R— ideal of M and for all a € R
and for every m € M we have a™(m) C P for some n € N. Hence for every
x € {a)<a R and m € (m)gr < M we have zt(m)r C P for some t € N. Since
P is an s—prime R— ideal we have (a)M C P or (m)p C P. Thus m € P or
(a)M C P and we are done.

2. = 3. Let a € R and m € M such that a(m)r C P. From 2. we have
m € P or (a)M C P. Hence P is a prime R—ideal. If there exists b € R such
that bM ¢ P then (b)M ¢ P. It now follows from 2 that if m € M\P then
b"(m) ¢ P for every n € N. Hence b"M ¢ P for every n € N.

3. = 4. Since P is a prime R—ideal, we have from Proposition 3.1 4. that
P = (P: M) is a 2-prime ideal of R and P = (P : M) = (P : (m)) for every
m € M\ P. We now show that N (R/(P : M)) = 0. Let A< R such that
A (P:M). Suppose a € A such that aM ¢ P. From 3. a"M ¢ P for every
n € N and we have N(R/(P : M)) = 0. It now follows from Proposition 2.2
that (P : M) is a 2 — s—prime ideal of R.

4. = 1. Suppose P = (P : M) is a 2—s—prime ideal of R and (P : (m)) =P
for every m € M\ P. Because (P : M) is a 2-prime ideal of R and (P : (m)) =
(P : M) for every m € M \ P it follows from Proposition 3.1 5. that P is a
prime R—ideal.of M. Furthermore, since (P : M) is a 2 — s—prime ideal of R
we have from Proposition 2.2 that N(R/(P : M)g) = (0). It now follows from
Corollary 4.5 that P is an s—prime R—ideal. O

Proposition 4.4. Let R be a zero symmetric near-ring and P <4 R, P # R.
The following are equivalent:
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1. P is a 2 — s—prime ideal of R;
2. There exists a s-prime R—module M such that P = (0: M)g.

Proof. Let P be a 2 — s—prime ideal and let M = R/P. M is an R—module
with the usual operation. Since P is a 2—prime ideal, M is a prime module.
Now, since P is a 2 — s—prime ideal of R we have from Proposition 2.2 that
N(R/P)=N(R/(0: M)gr) = (0). It now follows from Corollary 4.5 that (0)
is an s—prime R—ideal of M. Hence M is an s—prime module.

2. = 1. Follows from Proposition 4.3. O

5 s—systems and the s—prime radical of a Mod-
ule

Definition 5.1. Let R be a near-ring and M an R—module. A nonempty
set S C M\{0} is called an s—system if, for each ideal A of R and for all
submodules K, L of M, if (K+L)NS # & and (K +AM)NS # &, then there
exists € A such that (K +2™"L)N S # @ for every n € N.

Corollary 5.2. Let M be an R—module. Then, the R—ideal P of M 1is
s—prime if and only of M \ P is an s—system.

Proof. (=). Suppose S = M \ P. Let A< R and K, L submodules of M
such that (K + L)NS # @ and (K + AM) NS # &. Suppose that for every
2z € A there exist an n € N such that (K + 2"L) NS = &. Hence for every
x € A there exists n € N such that "L C P. Since P is s—prime, we have
LCPor AM C P. Tt follows that (K + L)NS =@ or (K+AM)NS =2, a
contradiction. Therefore, S is an s—system.

(«<). Suppose that for every A< R, L < M and x € A there exists n € N
such that "L C P. If L £ P and AM ¢ P, then LNS # @ and AM NS # @.
Hence, there exists a € A such that a”L NS # @ for every n € N. Thus we get
an a € A such that a" L P for every n € N, a contradiction. Therefore, P is
an s—prime R—ideal. O

Proposition 5.1. Let M be an R—module, P a proper R—ideal of M and let
S =: M\ P. Then, the following statements are equivalent:

1. P is s—prime;
2. S is an s—system;

3. For every A< R and for all L < M, if LNS # & and AM NS # &, then
there exists a € A such that a® N NS # @ for every n € N;
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4. For every a € R and every m € M, if (m) NS # & and aM N S # @,
then a™(m) NS # & for all n € N.

Proof. 1. & 2. follows from Corollary 5.2. 2. = 3. = 4. is clear.

4. = 1. Suppose a € R and m € M such that a"(m) C P for some n € N.
Suppose (m) € P and aM ¢ P. Now, (m)NS # & and aM NS # & and from
4. a¥{m)y NS # @ for all t € N. Hence also a™(m) NS # &, i.e., a™{m) P
a contradiction. It now follows from Proposition 4.3 that P is an s—prime
R—ideal. O

Proposition 5.2. Let M be an R—module S C M an s—system and P an
R—ideal of M maximal with respect to the property that PN S = &. Then P
is an s—prime R—ideal.

Proof. Suppose AdR and L < M such that for every a € A, a™ L C P for some
neN.IfLZPand AM ¢ P then (L+P)NS # @ and (AM + P)NS # @.
Since S is an s—system, there exists b € A such that (V*L + P)N S # @ for
every k € N. Since b'L C P for some t € N, we have PNS # &, a contradiction.
Hence, P must be an s—prime R—ideal. O

Definition 5.3. Let R be a near-ring and M and R—module. For an R—ideal
N of M, if there is an s—prime R—ideal containing NN, then we define

S(N) =: {m € M : every s — system containing m meets N}

We write S(N) = M whenever there is no s—prime R—ideal of M contain-
ing N.

Theorem 5.4. Let M be an R—module and N an R—ideal of M. Then,
either S(N) = M or S(N) equals the intersection of all s—prime R—ideals of
M containing N.

Proof. Suppose S(N) # M. This means
{P: Pisan s—prime R —ideal of M and N C P} # @&

We first prove S(N) € N{P : P is an s—prime R—ideal of M and N C P}.
Let t € S(N) and P any s—prime R—ideal of M with N C P. Consider the
s—system M \ P. This s—system cannot contain ¢, for otherwise it meets N
and hence also P. Hence ¢t € P. Conversely, assume ¢t ¢ S(N), then there
exists an s—system S such that t € S and SN N = @. From Zorn’s Lemma,
there exists an R—ideal P O N which is maximal with respect to PN .S = &.
From Proposition 5.2, P is an s—prime R—ideal of M and ¢t ¢ P, as desired.
O
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In what follows, let R be any zero symmetric near-ring (need not have an
identity). If M is an R—module, define

S(rM)=nN{P <r M : Pis an s—primeR — ideal of M} .

For the near-ring R, consider the R—module grR. We have the following:

Lemma 5.5. S(grR) C s2(R).

Proof. Let z € S(rR) and let I < R be a 2 — s—prime ideal of R. From
Proposition 4.3, we have R/I is an s—prime R—module. Hence, x € I and we
have z € s2(R), i.e., S(rR) C s2(R). O

Remark 5.6. In general this containment is strict: Since every ring is also a
near-ring, this follows from [14, Example 5.1].

Lemma 5.7. For any near-ring R and any R—module M we have

SQ(R) g (S(RM) : M)R

Proof. We have (S(rgM) : M)gr = (JN{S<r M : S s—prime}] : M) =
N{(S:M)S<r M :S s—prime}. Since (S : M)g is a 2 — s—prime ideal for
each s—prime R-ideal S of M we get so(R) C (S(rM) : M) . O

The containment is strict: let R = Z and M = Zy~ © Z for some prime
number p. Sg(M) = Zp~ and s2(R) = (0), i.e., s2(R)M = (0).

Proposition 5.3. For any near-ring R, so(R) = (S(rR) : R)g-

Proof. From Lemma 5.7 so(R) C (SgR) : R)r. Since S(grR) C s2(R) we
have s2(R) C (S(rR) : R) C (s2(R) : R). Let x € (s2(R) : R). Hence xR C
s2(R)=N{P < R:P 2—s—prime}. Since xR C P for each 2— s—prime ideal
P and since P is a 2-prime ideal we have x € P and consequently x € s3(R).

Hence, (s2(R) : R) C s2(R) and we are done. O

Remark 5.8. If R is a zero symmetric near-ring then S(rR) = s2(R) if and
only if for x € R, R C S(gR) implies x € S(rR).

Proof. Suppose xR C S(rR) implies © € S(gR). Since S(rR) C s2(R) for
any near-ring, we only have to show s2(R) C S(rR). Let y € so(R). From
Proposition 5.3 we have yR C S(rR) and from our assumption, it follows that
y € S(grR). Hence S(grR) = s2(R). The converse is clear from Proposition 5.3
O

6 Special classes of near-rings

Unless otherwise stated, all our near-rings will be zero-symmetric right near-
rings. Throughout, W will denote a universal class of near-rings, that is a class
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which is closed under taking homomorphic images and ideals. Any subclass
of W will be abstract i.e., it will be isomorphically closed and it will always
contain the trivial near-ring. A mapping p : W — W is called an ideal mapping
if p(R) is an ideal of R for every R € W. An ideal mapping p is said to be a
Hoehnke radical map (H-radical map for short) if:

(H 1) for every R € W and for every homomorphism f on R,
fp(R) Cp(f(R);

(H2) p(f/p(R)) =0 for every R € W.

The following relationships between the radicals of a near-ring and its ideals
play an important role in the general theory of radicals:
An H-radical p is:

(H 3) complete if p(I) =1 < R implies I C p(R);
(H 4) idempotent if p(p(R)) = p(R).

If p is an H-radical which is idempotent and complete, then it is called a
Kurosh-Amitsur (KA) radical map.

Unfortunately, when directly extending various K A-radicals from rings to
near-rings, we obtain a radical which is not only “bad” but is also “ugly”
in the sense that we may lose one or both conditions (Hs) and (Hy) of the
definition of a K A-radical. Many near-ring “radicals” are H-radicals but not
necessarily K A-radicals. This leads to two basic paths one can take to obtain
“nice” radicals (i.e., K A-radicals) for near-rings. First, one could add more
properties to the radical in question so that it is a K A-radical on the class
of near-rings and still coincides with its ring theoretic ancestor on the class of
rings. The second path we can take (the one we will take in what follows) is
to use the direct near-ring analogue of a ring radical but restrict the class of
near-rings to which it is applied.

The majority of the so-called radicals of near-rings are defined not as radical
classes but as mappings. Unfortunately these classes, as usual, are homomor-
phically closed but they are not necessarily closed under ideals i.e., the class is
not a universal class and, therefore, the traditional theory of radicals cannot
be applied here. To handle this situation we have the following generalization
of the concept of a radical introduced by Kaarli in [16].

Definition 6.1. Let o be a mapping which assigns to the near-ring R an ideal
o (R) and let 7 be a homomorphically closed class of near-rings. The mapping
o is called a 7 —radical map if:

(a) o satisfies (H1) and (H2);
(b) o satisfies (H3) and (H4) for all R € 7.
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If in the above definition 7 is the class of all near-rings then the concepts
T —radical and K A-radical are the same. From [12] we have :

Definition 6.2. A class F of near-rings is 7 —special if:

R1. All near-rings from F are 2—prime;
R2. Re7TNF and A< R implies A € F;
R3. I<«J< N and J/I € F implies I < R;

R4. If T is an essential ideal of R (I <-R) and I € F, then R € F (i.e. F is
closed under essential extensions).

The mapping o is called a 7 —special radical radical mapifo (R) =N{I: R/I € F}
where F is a 7 —special class of near-rings. This definition extends the concept
of a special radical for rings [7] and [18] to near-rings.

In order to the define a special class of near-ring modules, we recall the
following

Let R be a near-ring and I < R. Let r € Rand m € M. If M is an
R/I-module, then with respect to rm = (r + I)m, M becomes an R—module
and I C (0 : M)gr. If M is an R—module and I C (0 : M)gr, then M is
an R/I-module with respect to (r + I)m = rm. In both cases, we have that
(0:M)pyr=(0:M)g/I.

Now let 7 be a nonempty class of zero-symmetric right near-rings which is
closed under homomorphic images. For each near-ring R, let Mg be a class of
R—modules (possibly empty). Let M = U{Mp : R is a near-ring}. Then we
introduce the notion of a 7 —special class of near-ring modules:

Definition 6.3. A class M = U{Mp : R is a near-ring} of near-ring modules
is called a 7 —special class if it satisfies the following conditions:

(M1) If M € Mg and I < R with IM =0, then M € Mg/r;

(M2) If I<Rand M € Mg/, then M € Mg;

(M3) If M e Mg and I QR €T with IM #0, then M € My;

(M4) If M € Mg, then RM #0 and R/(0: M) is a 2—prime near-ring;

(M5) If IR e T and M € My, then there exists an R—module N € Mg
such that (0: N); C(0: M)y;

(M6) If K <I<ReT and there exists a faithful I/K-module M € My,
then K < R.
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In the previous section, we have seen that there were numerous relation-
ships between a near-ring and its modules. In particular, prime R-ideals of
the R—module M led to prime ideals of R and, under certain conditions, the
converses are also true. It is, therefore, natural to assume that there is a re-
lationship between special radicals of near-rings and special radicals of their
modules. In the two theorems that follow, we show the construction of a spe-
cial class of near-rings from a special class of near-ring modules and the reversal
of the process.

From [13] we have the following:

Theorem 6.4. Let M = U{Mpg : R is a near-ring} be a T —special class of
near-ring modules. Then

F = {R : there exists M € Mg with (0: M)r = 0} U{0} is a T—special
class of near-rings.

Theorem 6.5. Let F be a T —special class of near-rings and for the near-ring
R, let Mp = {M : M is an R—module, RM # 0 and R/(0 : M) € F}.
If M = U{Mpg : R is a near-ring} then M is a T —special class of near-ring
modules.

Proposition 6.1. Let M be a T —special class of near-ring modules and sup-
pose I <R € Ry, where Ry denotes the class of zero-symmetric near-rings. Let
F be the corresponding T —special class of near-rings. Then R/I € F if and
only if I = (0: M)g for some M € Mg.

We now have the following:

Let K be a 7 —special class of modules, let Mg be the class of near-rings
defined by Mg := {R : there exists M € Kg with (0: M) = 0}. Then, Mg
is a 7 —special class of near-rings and if R is the corresponding radical then,
R(R) =n{(0: M)r : M € Kgr} for each near-ring R. Conversely, if F is a
T —special class of near-rings, let Mp := {M is an R—module, RM # 0 and
R/(0: M)r € F} for each near-ring R. Then M := U{Mp} is a 7 —special
class of modules and r(M) =N{S <g M : M/S € M}.

In 1958 Andrunakievich [2] proved the following lemma for associative rings:

“If I is an ideal of a ring R and K is an ideal of I, then (K)% C K where
(K) R is the ideal of R generated by K.”

This result has had far reaching consequences through its application to rad-
ical theory of associative rings. Because in general the Andrunakievich Lemma
is not satisfied for near-rings, the notion of A-near-rings were introduced in
[6]. To get the best possible results about the prime radicals which are not
K A-radicals, we shall make use of the concept of an A-near-ring. An ideal I of
a near-ring R is called an A-ideal if for each ideal K of the near-ring I there is
some n > 1, perhaps depending on K, such that ((K)z)" C K. R is called an
A-near-ring if every ideal of R is an A-ideal. The class A is wide and varied,
including all distributively generated near-rings and all near-rings which are
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neither nilpotent nor strongly regular. These and many other examples and
the basic properties of .A-near-rings are given in [6].

Proposition 6.2. Let R be any near-ring and Mg := {M : M is a prime
R-module}. If M =UMp, then M is an A—special class of R-modules.

Proof.

M1 Let M € Mg and I <R with IM = 0. Now M is an R/I-module. We
show M € Mp,;. Let A< R/I and B <p M such that AB = 0. Then,
A = L/I for some ideal L of R, and hence (L/I)B = 0, i.e., we have
LB = 0. Since M is prime, we have LM = 0 or B = 0. By the scalar
operation in R/I, LM = (L + I)M = (L/I)M = AM. So AM = 0 or
B =0 whence M is a prime R/I module and we have M € Mp/;.

M2 Let I <R and M € Mg ;. M is an R-module w.r.t. rm = (r + I)m
forr € Rand m € M. Let A< R and B <g M such that AB = 0.
Then A/I < R/I and for all a € A, we have (a + I)B = aB = 0. Hence
(A/I)B = 0 and since M € Mg/, it follows that (A/I)M =0 or B = 0.
But for all @ € A, we have (a + I)M = aM. Hence AM =0or B=0
and therefore M € Mpg.

M3 Let M € Mg and A< R € A with AM # 0. Let B<1 A< R and
N <4 M such BN = 0. Since R € A, there exists n € N such that
(B)EN € BN = 0. Let m be minimal such that (B)FN C BN = 0.
If m = 1, then (B)gN = 0. If N is also an R—submodule then, since
M is a prime module, we have (B)gM = 0 or N = 0. If N = 0 then
we are done. Suppose N # 0. Now (B)grM = 0 and we have BM = 0.
If N is not an R— submodule of M, then there exists ¢t € N such
that Rt & N. Rt is a nonzero R— submodule of M. Now we have
(B)rRt C (B)rt C (B)rN € BN = 0. Since M is a prime R—module
and Rt is a nonzero R submodule we have BM C (B)pM = 0. If
m > 1, then (B); 'N # 0 and there exists z € (B)}; >N C M such
that (B)rx # 0. Now, (B)r(B)rx = 0. Since (B)rx is a nonzero R
submodule, and M € Mp we have BM = 0 and we are done.

M4 Let M € Mp. Hence RM # 0. Since (0 : M)g is a 2—prime ideal of R,
R/(0: M)pg is a 2—prime near-ring.

M5 Let R € A with I < R such that M € M. Since M € My, (0: M);isa
2—prime ideal of I. So (0: M); <I < R. Since R€ Aand I/(0: M);)a
2—prime near-ring, it follows from [6, Lemma 1] that (0 : M); < R. Now
choose K/(0: M); to be the ideal of R/(0 : M); which is maximal with
respect to I/(0 : M)y NK/(0 : M); = 0. Then it is well known that
I/(0: M); =2I/K<-R/K. Since I/(0: M)y is a 2—prime near-ring and
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since the class of 2—prime near-rings is essentially closed it follows that
R/K is a 2—prime near-ring. Now R/K is an R—module. We show that
H = R/K is the required R—module. Clearly, R(R/K) # 0. We show
that (0: R/K)r = K. Solet z € K. Then z(r + K) =ar + K = K for
all € R. Therefore z € (0 : R/K)gr. Conversely, let z € (0: R/K)g.
Then 2R C K. Since R/K is a 2—prime near-ring, K is a 2—prime ideal
of R. But xR C K and K is 2—prime implies that z € K. Hence we have
that (0 : R/K)r = K. Now R/(0 : R/K)g = R/Kand R(R/K) # 0.
Hence H = R/K € Mg. Finally, we show that (0: R/K)r C (0: M)j.
Let z € (0 : R/K);. Since I < R, we have that xR C I. Furthermore,
2(R/K)=0= xR C K. Hence xR C I N K, and from the definition
of K/(0: M)y, weget tRCINK C (0: M);. Hence zRM = 0. Now
xIM C xRM = 0 implies I C (0 : M);. Since I/(0: M)y is a 2—prime
near-ring, (0 : M); is a 2—prime ideal of I and we get 2z € (0: M);. So
(0:R/K); C(0: M); and (M5) is satisfied.

M6 Let K <I <R € Aand M € Mj/g be a faithful //K-module. Since

I/K
M € Mp/k and M is faithful, we have that I/K = /7 is a
(O : M)[/K
2—prime near-ring. Thus K is a 2 -prime ideal of I. Since [ is an
A—ideal of R it follows from [6, Lemma 1] that K < R. O

Remark 6.6. If M,, denotes the A—special class of prime near-ring modules,
then the A—special radical induced by M, on a near-ring R is given by:
p2(R) =nN{(0: M)g: M is a prime R — module }
=N{I<R: I a2—prime ideal }

Let R be an A -near-ring and let My = {M : M is ans—prime R — module}.
We want to show that My is an A—special class of near-ring modules. Since we
already know that the class of prime modules is an A—special class, it follows
from Proposition 4.1 that we only have to show that conditions (M1) to (M6)
of Definition 6.3 are satisfied for condition (b) of Corollary 4.5

Proposition 6.3. Let R be any A—near-ring and Mg := {M :M is an s—prime
R-module}. If My = UMp, then M is a A—special class of near-ring mod-
ules.

Proof.

M1 Let M € Mp and I < R with IM = 0. Now M € Mpg implies that
R/(0 : M)g contains no nonzero nil ideals. But (R/I)/(0 : M)g/;r =
(R/I)/([(0: M)g]/I) ~ R/(0: M)g. Hence (R/I)/(0: M)g/; contains
no nonzero nil ideals and thus we have M € Mpg/;.

M2 If I<aRand M € Mg, (R/I)/(0: M)g/r contains no nonzero nil ideals.
So R/(0: M)gr ~ (R/I)/(0 : M)g/r has no nonzero nil ideals implies M
€ Mkg.
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M3 Let M € Mg and I <R € A with IM # 0. Then R/(0 : M)r contains
no nonzero nil ideals. Now I/(0: M)y = I/[(0: M)gNI] ~ (I 4 (0:
M)r)/(0 : M)gr < R/(0 : M)g. Since R is an A—near-ring it follows
from [6, Corollary 12] that I/(0 : M) also contains no nonzero nil ideals.
Hence M € M.

M4 Let M € Mp. Hence RM # 0. Since (0 : M)g is a 2—prime ideal of R,
R/(0: M)pg is a 2—prime near-ring.

M5 Let R € A with I < R such that M € Mj;. As in the proof of M5
of Proposition 6.2 choose K/(0 : M); to be the ideal of R/(0 : M),
which is maximal with respect to I/(0 : M); N K/(0: M); = 0. Then
I/(0: M)y 21/K <-R/K. Since M € My, I/(0: M) contains no
nonzero nil ideals. Hence we also have that R/K contains no nonzero
nil ideals. But we know that K = (0 : R/K)r. Hence R/(0 : R/K)gr
contains no nonzero nil ideals implying that R/K € Mg.

M6 Let K <I <R € Aand M € My,k be a faithful I/K-module. Since M
is faithful I/K-module, (0 : M) x = 0. Since M € M, gwe have that
(0: M)/ = 0is a2— s—prime ideal of I/K and consequently I/K is a
2— s—prime near-ring. From [6, Lemma 1] we get K < R. O

Proposition 6.4. If My is a A—special class of near-ring modules, then the
A—special radical induced by My on a near-ring R is given by:
s2(R) =n{(0:M)r: M is an s—prime R — module}
=N{I<R:I a2— s—prime ideal }
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