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Abstract

In this paper, we present a unified technique to discuss the additivity
of n-multiplicative generalized derivations.

1 Introduction

Let R be an associative ring and n be a positive integer ≥ 2. A mapping
d : R → R is called a n-multiplicative derivation of R if

d(a1 · · ·an) =
n∑

i=1

a1 · · ·d(ai) · · ·an,

for arbitrary elements a1, · · · , an ∈ R [4]. If d(a1a2) = d(a1)a2 + a1d(a2) for
arbitrary elements a1, a2 ∈ R, we just say that d is a multiplicative derivation
of R [1].

A mapping h : R → R is called additive if h(a1 + a2) = h(a1) + h(a2), for
arbitrary elements a1, a2 ∈ R.

The following definition is based on [2, pp. 32] and [4, pp. 2351].
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A mapping g : R → R is called n-multiplicative generalized derivation if
there is an additive n-multiplicative derivation of R d such that

g(a1a2 · · ·an) = g(a1)a2 · · ·an +
n∑

i=2

a1a2 · · ·d(ai) · · ·an,

for arbitrary elements a1, a2, · · · , an ∈ R. If g(a1a2) = g(a1)a2 + a1d(a2) for
arbitrary elements a1, a2 ∈ R, we just say that g is a multiplicative generalized
derivation of R.

The authors in [2] characterized the additivity of multiplicative generalized
derivations on the class of associative rings R containing a non-trivial idem-
potent satisfying certain conditions, based on Martindale’s conditions [3, pp.
695]. Their main result as follows:

Theorem 1.1. [2, Theorem 2.1.] Let R be an associative ring containing an
idempotent e which satisfies the following conditions,

(i) xRe = 0 implies x = 0 (and hence xR = 0 implies x = 0).

(ii) exeR(1 − e) = 0 implies exe = 0.

(iii) (1 − e)xeR(1 − e) = 0 implies (1 − e)xe = 0.

If g is any multiplicative generalized derivation of R, i.e. g(xy) = g(x)y+xd(y),
for arbitrary elements x, y ∈ R and some derivation d of R, then g is additive.

In this paper we present a unified technique, based on the ideas of Wang
[4], to discuss the additivity of n-multiplicative generalized derivations. As an
application of the obtained results, we generalize the Theorem 1.1 for the class
of n-multiplicative generalized derivations of an arbitrary associative ring con-
taining a non-trivial idempotent satisfying the Daif and El-Sayiad’s conditions
(i)-(iii).

2 The main result

Our main result is as follows:

Theorem 2.1. Let R be an associative ring containing a non-trivial idempotent
e which satisfies the following conditions:

(i) xRe = 0 implies x = 0 (and hence xR = 0 implies x = 0);

(ii) exeR(1 − e) = 0 implies exe = 0;

(iii) (1 − e)xeR(1 − e) = 0 implies (1 − e)xe = 0.

Suppose that f : R × R → R is a mapping and k a positive integer satisfying:
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(iv) f(x, 0) = f(0, y) = 0;

(v) f(Re, Re) ⊆ Re;

(vi) f(u1 · · ·ukx, u1u2 · · ·uky) = 0;

(vii) f(x, y)u1u2 · · ·uk = f(xu1u2 · · ·uk, yu1u2 · · ·uk);

for arbitrary elements x, y, u1, u2, · · · , uk ∈ R.

Then f(x, y) = 0, for arbitrary elements x, y ∈ R.

Following the techniques presented by Daif and El-Sayiad [2] and Wang [4],
we organize the proof of Theorem 2.1 in a series of Lemmas which have the
same hypotheses. We begin with the following.

Lemma 2.2. f(x, y)u = f(xu, yu) for all elements x, y, u ∈ R.

Proof. For arbitrary elements x, y, u, u1, u2, · · · , uk ∈ R we have

f(x, y)uu1 · · ·uk = f(x, y)(uu1) · · ·uk = f(x(uu1) · · ·uk, y(uu1) · · ·uk)
= f((xu)u1 · · ·uk, (yu)u1 · · ·uk) = f(xu, yu)u1 · · ·uk.

It follows that (f(x, y)u − f(xu, yu))u1 · · ·uk = 0. In view of condition (i) of
the Theorem 2.1, we conclude that f(x, y)u = f(xu, yu). �

Lemma 2.3. f(x11 +x12, y11 + y12) = 0, for arbitrary elements x11, y11 ∈ R11

and x12, y12 ∈ R12.

Proof. The result is a direct consequence of condition (vi) of the Theorem 2.1.
�

Lemma 2.4. f(x22, y21) = 0, for arbitrary elements x22 ∈ R22 and y21 ∈ R21.

Proof. For an arbitrary element u1j of R1j (j = 1, 2) we have

f(x22, y21)u1j = f(x22u1j, y21u1j) = f(0, y21u1j) = 0

which implies that f(x22, y21)R1j = 0. Also, for an arbitrary element u2j of
R2j (j = 1, 2) we have

f(x22, y21)u2j = f(x22u2j, y21u2j) = f(x22u2j, 0) = 0

which results that f(x22, y21)R2j = 0. It follows that f(x22, y21)R = 0 which
implies that f(x22, y21) = 0, by condition (i) of the Theorem 2.1. �

Lemma 2.5. f(x21, y21) = 0, for arbitrary elements x21, y21 ∈ R21.
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Proof. For arbitrary elements z12 of R12 and u1j of R1j (j = 1, 2) we have

f(x21, x21)z12u1j = 0

which implies that f(x21, y21)z12R1j = 0. Also, for an arbitrary element u2j

of R2j (j = 1, 2) we have

f(x21, y21)z12u2j = f(x21z12u2j, y21z12u2j)
= f(x21z12(u2j + z12u2j), y21(u2j + z12u2j))

= f(x21z12, y21)(u2j + z12u2j) = 0,

by Lemma 2.4, which results that f(x21, y21)z12R2j = 0. It follows that
f(x21, y21)z12R = 0 which implies that f(x21, y21)R12 = 0. From conditions
(ii), (iii) and (v) of the Theorem 2.1, we conclude that f(x21, y21) = 0. �

Lemma 2.6. f(x12 +x21, y12 + y21) = 0, for arbitrary elements x12, y12 ∈ R12

and x21, y21 ∈ R21.

Proof. For an arbitrary element u1j of R1j (j = 1, 2) we have

f(x12 + x21, y12 + y21)u1j = f((x12 + x21)u1j, (y12 + y21)u1j)
= f(x21u1j, y21u1j) = f(x21, y21)u1j = 0,

by Lemma 2.5, which implies that f(x12 + x21, y12 + y21)R1j = 0. Also, for an
arbitrary element u2j of R2j (j = 1, 2) we have

f(x12 + x21, y12 + y21)u2j = f((x12 + x21)u2j, (y12 + y21)u2j)
= f(x12u2j, y12u2j) = f(x12, y12)u2j = 0,

by Lemma 2.3, which results that f(x12 + x21, y12 + y21)R2j = 0. It follows
that f(x12 + x21, y12 + y21)R = 0 which allows us to conclude that f(x12 +
x21, y12 + y21) = 0. �

Lemma 2.7. f(x11 +x21, y11 + y21) = 0, for arbitrary elements x11, y11 ∈ R11

and x21, y21 ∈ R21.

Proof. For arbitrary elements z12 of R12 and u1j of R1j (j = 1, 2) we have

f(x11 + x21, y11 + y21)z12u1j = 0

which implies that f(x11 + x21, y11 + y21)z12R1j = 0. Also, for an arbitrary
element u2j of R2j (j = 1, 2) we have

f(x11 + x21, y11 + y21)z12u2j = f((x11 + x21)z12u2j, (y11 + y21)z12u2j)
= f((x11z12 + x21)(u2j + z12u2j), (y11z12 + y21)(u2j + z12u2j))
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= f(x11z12 + x21, y11z12 + y21)(u2j + z12u2j) = 0,

by Lemma 2.6, which results that f(x11+x21, y11+y21)z12R2j = 0. This implies
that f(x11+x21, y11+y21)z12R = 0 which yields that f(x11+x21, y11+y21)R12 =
0. From conditions (ii), (iii) and (v) of the Theorem 2.1, we conclude that
f(x11 + x21, y11 + y21) = 0. �

Proof of Theorem 2.1. Let x, y and r be arbitrary elements of R. Then

f(x, y)re = f(xre, yre) = 0,

by Lemma 2.7. This results that f(x, y)Re = 0 which allows us to conclude
that f(x, y) = 0, by condition (i) of the Theorem 2.1. �

3 Some applications of the main result

In this section, we give some applications of our main result. We started by
discussing the additivity of n-multiplicative generalized derivations.

Theorem 3.1. Let R be a (n − 1)-torsion free associative ring containing a
non-trivial idempotent e which satisfies the following conditions:

(i) xRe = 0 implies x = 0 (and hence xR = 0 implies x = 0);

(ii) exeR(1 − e) = 0 implies exe = 0;

(iii) (1 − e)xeR(1 − e) = 0 implies (1 − e)xe = 0.

Then every n-multiplicative generalized derivation of R is additive.

The proof will be also organized in a series of lemmas. We begin with the
following.

Let g : R → R be a n-multiplicative generalized derivation of R. Then there
is an additive n-multiplicative derivation of R d such that

g(a1a2 · · ·an) = g(a1)a2 · · ·an +
n∑

i=2

a1a2 · · ·d(ai) · · ·an,

for arbitrary elements a1, a2, · · · , an ∈ R. First, we note that

d(e) = d(e · · · e︸ ︷︷ ︸
n terms

) =
n∑

i=1

i terms︷ ︸︸ ︷
e · · ·d(e) · · · e︸ ︷︷ ︸

n terms

= d(e)e + (n − 2)ed(e)e + ed(e)
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which implies that ed(e)e = 0, since R is (n − 1)-torsion free. Hence, if
d(e) = a11 + a12 + a21 + a22, where aij is an element of Rij (i, j = 1, 2), then
d(e) = a12 + a21. Also,

g(e) = g(e · · · e︸ ︷︷ ︸
n terms

) = g(e) · · · e︸ ︷︷ ︸
n terms

+
n∑

i=2

i terms︷ ︸︸ ︷
e · · ·d(e) · · · e︸ ︷︷ ︸

n terms

= g(e)e + ed(e).

Hence, if g(e) = b11 + b12 + b21 + b22, where bij is an element of Rij (i, j = 1, 2),
then b11 + b12 + b21 + b22 = b11 + b21 + a12 which implies that a12 = b12 and
b22 = 0. This results that g(e) = b11 + a12 + b21.

Let h be the inner derivation of R determined by the element a12 − a21.
Then h(x) = [x, a12 − a21] for an arbitrary element x of R. In particular,
we have h(e) = [e, a12 − a21] = a12 + a21. Let H be the generalized inner
derivation determined by the elements b11 + b21 and a12 − a21. Then H(x) =
(b11 + b21)x + x(a12 − a21) for an arbitrary element x of R. Similarly, we have
H(e) = b11 + a12 + b21.

Set the mappings D, G : R → R by D = d − h and G = g − H. Then
D is an additive n-multiplicative derivation of R and G is a n-multiplicative
generalized derivation of R satisfying

G(a1a2 · · ·an) = G(a1)a2 · · ·an +
n∑

i=2

a1a2 · · ·D(ai) · · ·an,

for arbitrary elements a1, a2, · · · , an ∈ R and such that D(e) = 0 = G(e).
Moreover, the mapping g is additive if and only if G is additive.

From what we saw above, to prove the Theorem 3.1 we can, without loss
of generality, replace the n-multiplicative derivation d by the n-multiplicative
derivation D and the n-multiplicative generalized derivation g by the n-multiplicative
generalized derivation G. Therefore, in the remaining part of this paper we will
prove the additivity of the mapping G.

Lemma 3.2. D(0) = 0 and G(0) = 0.

Proof. We easily see that D(0) = 0. This results that

G(0) = G(0 · · ·0︸ ︷︷ ︸
n terms

) = G(0) · · ·0︸ ︷︷ ︸
n terms

+
n∑

i=2

0 · · ·D(0) · · · 0︸ ︷︷ ︸
n terms

= 0.

�

Lemma 3.3. D(Rij) ⊆ Rij (i, j = 1, 2).

Proof. For an arbitrary element x11 of R11 we have D(x11) = D(ex11e · · · e︸ ︷︷ ︸
n terms

) =

eD(x11)e which is an element of R11. Also, for an arbitrary element x12 of
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R12, then D(x12) = D(e · · · ex12︸ ︷︷ ︸
n terms

) = eD(x12) and 0 = D(0) = D(x12e · · · e︸ ︷︷ ︸
n terms

) =

D(x12)e. It follows that D(x12) belongs to R12. Similarly, we prove that for an
arbitrary element x21 of R21, D(x21) belongs to R21. Finally, for an arbitrary
element x22 of R22, then 0 = D(0) = D(e · · · ex22︸ ︷︷ ︸

n terms

) = eD(x22) and 0 = D(0) =

D(x22e · · · e︸ ︷︷ ︸
n terms

) = D(x22)e. Therefore D(x22) is an element of R22. This proves

the Lemma. �

Lemma 3.4. The following hold: (i) G(R1j) ⊆ R1j (j = 1, 2), (ii) G(R11 +
R21) ⊆ R11 + R21 and (iii) G(R22) ⊆ R12 + R22. Moreover G(x11 + x12) =
G(x11) + G(x12), for arbitrary elements x11 of R11 and x12 of R12.

Proof. Let x1j be an arbitrary element of R1j (j = 1, 2). Then G(x1j) =
G(e · · ·ex1j︸ ︷︷ ︸

n terms

) = G(e)e · · ·x1j︸ ︷︷ ︸
n terms

+
∑n

i=2 e · · ·D(e) · · ·x1j︸ ︷︷ ︸
n terms

= eD(x1j) = D(x1j) which

is an element of R1j, by Lemma 3.3. Thus, for an arbitrary
element x11 + x12 of eR we have G(x11 + x12) = G(e · · ·e(x11 + x12)︸ ︷︷ ︸

n terms

) =

G(e)e · · · (x11 + x12)︸ ︷︷ ︸
n terms

+
∑n

i=2 e · · ·D(e) · · · (x11 + x12)︸ ︷︷ ︸
n terms

= eD(x11 + x12) =

D(x11) + D(x12) = G(x11) + G(x12), by the preceding case. This allows us to
conclude that G(R1j) ⊆ R1j (j = 1, 2) and that G(x11+x12) = G(x11)+G(x12).
Also, for arbitrary elements x11 of R11 and x21 of R21, we have G(x11 +x21) =
G((x11 + x21)e · · · e︸ ︷︷ ︸

n terms

) = G(x11 + x21)e · · · e︸ ︷︷ ︸
n terms

+
∑n

i=2 (x11 + x21) · · ·D(e) · · · e︸ ︷︷ ︸
n terms

= G(x11 + x21)e. This results that G(R11 +

R21) ⊆ R11+R21. Yet, for an arbitrary element x22 of R22 write G(x22) = d11+
d12 + d21 + d22. Then 0 = G(0) = G(x22e · · · e︸ ︷︷ ︸

n terms

) = G(x22)e · · · e︸ ︷︷ ︸
n terms

+
∑n

i=2 x22 · · ·D(e) · · · e︸ ︷︷ ︸
n terms

= G(x22)e = d11 + d21. This shows that G(x22) =

d12 + d22.

This proves the Lemma. �

Proof of Theorem 3.1. From the hypotheses, let g a n-multiplicative general-
ized derivation of R and d an additive n-multiplicative derivation of R such
that

g(a1 · · ·an) = g(a1) · · ·an +
n∑

i=2

a1 · · ·d(ai) · · ·an,
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for arbitrary elements a1, · · · , an ∈ R. Set f : R × R → R by f(x, y) = G(x +
y) − G(x) − G(y), for arbitrary elements x, y ∈ R. Then f(x, 0) = f(0, y) = 0,
for arbitrary elements x, y ∈ R. Also, for arbitrary elements x11, y11 of R11

and x21, y21 of R21 we have f(x11 + x21, y11 + y21) = G((x11 + x21) + (y11 +
y21)) − G(x11 + x21) − G(y11 + y21) = G((x11 + y11) + (x21 + y21)) − G(x11 +
x21) − G(y11 + y21) which is an element of R11 + R21, by Lemma 3.4(ii). This
shows that f(Re, Re) ⊆ Re. Yet, for arbitrary elements x, y, u1, · · · , un−1 ∈ R
we have

f(u1 · · ·un−1x, u1 · · ·un−1y) = G(u1 · · ·un−1x + u1 · · ·un−1y)
− G(u1 · · ·un−1x) − G(u1 · · ·un−1y) = G(u1 · · ·un−1(x + y))
− G(u1 · · ·un−1x) − G(u1 · · ·un−1y) = G(u1) · · ·un−1(x + y)

+
n∑

i=2

u1 · · ·D(ui) · · ·un−1(x + y) − G(u1) · · ·un−1x

−
n∑

i=2

u1 · · ·D(ui) · · ·un−1x−G(u1) · · ·un−1y−
n∑

i=2

u1 · · ·D(ui) · · ·un−1y = 0

and

f(x, y)u1 · · ·un−1 =
(
G(x + y) − G(x) − G(y)

)
u1 · · ·un−1

= G(x + y)u1 · · ·un−1 − G(x)u1 · · ·un−1 − G(y)u1 · · ·un−1

= G(x + y)u1 · · ·un−1 +
n∑

i=2

(x + y)u1 · · ·D(ui) · · ·un−1

− G(x)u1 · · ·un−1 −
n∑

i=2

xu1 · · ·D(ui) · · ·un−1

− G(y)u1 · · ·un−1 −
n∑

i=2

yu1 · · ·D(ui) · · ·un−1

= G((x + y)u1 · · ·un−1) − G(xu1 · · ·un−1) − G(yu1 · · ·un−1)
= f(xu1 · · ·un−1, yu1 · · ·un−1).

�

Corollary 3.5. Let R be a (n−1)-torsion free prime associative ring containing
a non-trivial idempotent e. Then every n-multiplicative generalized derivation
of R is additive.

The ideas that follow below are similar those presented by Wang [4].

Let X be a Banach space. Denote by B(X) the algebra of all bounded linear
operators on X. A subalgebra of B(X) is called a standard operator algebra
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if it contains all finite rank operators. It is well known that every standard
operator algebra is prime. Moreover, if dimX ≥ 2, then there exists a non-
trivial idempotent operator of rank one in B(X). Therefore, it follows from
Corollary 3.5 that:

Corollary 3.6. Let X be a Banach space with dimX ≥ 2, A be a standard
operator algebra on X. Then every n-multiplicative generalized derivation of A
is additive.
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