East-West J. of Mathematics: Vol. 22, No 2 (2020) pp. 165-173 https://doi.org/10.36853/ewjm0378

*n***-MULTIPLICATIVE GENERALIZED DERIVATIONS WHICH ARE ADDITIVE**

Jo˜ao Carlos da Motta Ferreira[∗] and **Maria das Gra¸cas Bruno Marietto**†

Center for Mathematics, Computation and Cognition Federal University of ABC Santa Ad´elia Street, 166, 09210-170, Santo Andr´e, Brazil e-mail: ∗*joao.cmferreira@ufabc.edu.br;* † *graca.marietto@ufabc.edu.br*

Abstract

In this paper, we present a unified technique to discuss the additivity of *n*-multiplicative generalized derivations.

1 Introduction

Let R be an associative ring and n be a positive integer \geq 2. A mapping $d: \mathbb{R} \to \mathbb{R}$ is called a *n*-multiplicative derivation of R if

$$
d(a_1 \cdots a_n) = \sum_{i=1}^n a_1 \cdots d(a_i) \cdots a_n,
$$

for arbitrary elements $a_1, \dots, a_n \in \mathbb{R}$ [4]. If $d(a_1a_2) = d(a_1)a_2 + a_1d(a_2)$ for arbitrary elements $a_1, a_2 \in \mathbb{R}$, we just say that *d* is a *multiplicative derivation* of R [1].

A mapping $h: \mathbb{R} \to \mathbb{R}$ is called *additive* if $h(a_1 + a_2) = h(a_1) + h(a_2)$, for arbitrary elements $a_1, a_2 \in \mathbb{R}$.

The following definition is based on [2, pp. 32] and [4, pp. 2351].

[∗]Corresponding author

Key words: Associative rings, additivity, *n*-multiplicative generalized derivations 2010 AMS Mathematics Classification: 16N60, 16W99.

A mapping $g : \mathbb{R} \to \mathbb{R}$ is called *n*-multiplicative generalized derivation if there is an additive *n*-multiplicative derivation of R *d* such that

$$
g(a_1a_2\cdots a_n)=g(a_1)a_2\cdots a_n+\sum_{i=2}^n a_1a_2\cdots a(a_i)\cdots a_n,
$$

for arbitrary elements $a_1, a_2, \dots, a_n \in \mathbb{R}$. If $g(a_1 a_2) = g(a_1) a_2 + a_1 d(a_2)$ for arbitrary elements $a_1, a_2 \in \mathbb{R}$, we just say that *g* is a *multiplicative generalized derivation* of R*.*

The authors in [2] characterized the additivity of multiplicative generalized derivations on the class of associative rings R containing a non-trivial idempotent satisfying certain conditions, based on Martindale's conditions [3, pp. 695]. Their main result as follows:

Theorem 1.1. *[2, Theorem 2.1.] Let* R *be an associative ring containing an idempotent e which satisfies the following conditions,*

- *(i)* $x \text{R}e = 0$ *implies* $x = 0$ *(and hence* $x \text{R} = 0$ *implies* $x = 0$ *).*
- *(ii)* $exeR(1-e) = 0$ *implies* $exe = 0$ *.*
- (iii) $(1-e)xeR(1-e) = 0$ *implies* $(1-e)xe = 0$.

If g is any multiplicative generalized derivation of R, *i.e.* $g(xy) = g(x)y + xd(y)$, *for arbitrary elements* $x, y \in \mathbb{R}$ *and some derivation d of* \mathbb{R} *, then g is additive.*

In this paper we present a unified technique, based on the ideas of Wang [4], to discuss the additivity of *n*-multiplicative generalized derivations. As an application of the obtained results, we generalize the Theorem 1.1 for the class of *n*-multiplicative generalized derivations of an arbitrary associative ring containing a non-trivial idempotent satisfying the Daif and El-Sayiad's conditions (i) - (iii) .

2 The main result

Our main result is as follows:

Theorem 2.1. *Let* R *be an associative ring containing a non-trivial idempotent e which satisfies the following conditions:*

- (i) $xRe = 0$ *implies* $x = 0$ (and hence $xR = 0$ *implies* $x = 0$ *);*
- $(iii) \, \text{ex}eR(1-e) = 0 \, \text{implies} \, \text{ex}e = 0;$
- (iii) $(1-e)xeR(1-e) = 0$ *implies* $(1-e)xe = 0$.

Suppose that $f: \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ *is a mapping and k a positive integer satisfying:*

- $(iv) f(x, 0) = f(0, y) = 0;$
- *(v)* $f(\text{Re}, \text{Re})$ ⊆ R*e*;
- (vi) $f(u_1 \cdots u_k x, u_1 u_2 \cdots u_k y) = 0;$
- (vii) $f(x, y)u_1u_2\cdots u_k = f(xu_1u_2\cdots u_k, yu_1u_2\cdots u_k);$

for arbitrary elements $x, y, u_1, u_2, \dots, u_k \in \mathbb{R}$. *Then* $f(x, y) = 0$ *, for arbitrary elements* $x, y \in \mathbb{R}$ *.*

Following the techniques presented by Daif and El-Sayiad [2] and Wang [4], we organize the proof of Theorem 2.1 in a series of Lemmas which have the same hypotheses. We begin with the following.

Lemma 2.2. $f(x, y)u = f(xu, yu)$ *for all elements* $x, y, u \in \mathbb{R}$ *.*

Proof. For arbitrary elements $x, y, u, u_1, u_2, \dots, u_k \in \mathbb{R}$ we have

$$
f(x,y)uu_1\cdots u_k = f(x,y)(uu_1)\cdots u_k = f(x(uu_1)\cdots u_k, y(uu_1)\cdots u_k)
$$

=
$$
f((xu)u_1\cdots u_k, (yu)u_1\cdots u_k) = f(xu, yu)u_1\cdots u_k.
$$

It follows that $(f(x, y)u - f(xu, yu))u_1 \cdots u_k = 0$. In view of condition (i) of the Theorem 2.1, we conclude that $f(x, y)u = f(xu, yu)$. □ the Theorem 2.1, we conclude that $f(x, y)u = f(xu, yu)$.

Lemma 2.3. $f(x_{11} + x_{12}, y_{11} + y_{12}) = 0$, *for arbitrary elements* $x_{11}, y_{11} \in R_{11}$ *and* $x_{12}, y_{12} \in R_{12}$ *.*

Proof. The result is a direct consequence of condition (vi) of the Theorem 2.1. \Box

Lemma 2.4. $f(x_{22}, y_{21}) = 0$ *, for arbitrary elements* $x_{22} \in R_{22}$ *and* $y_{21} \in R_{21}$ *.*

Proof. For an arbitrary element u_{1j} of R_{1j} ($j = 1, 2$) we have

$$
f(x_{22}, y_{21})u_{1j} = f(x_{22}u_{1j}, y_{21}u_{1j}) = f(0, y_{21}u_{1j}) = 0
$$

which implies that $f(x_{22}, y_{21})R_{1j} = 0$. Also, for an arbitrary element u_{2j} of R_{2j} $(j = 1, 2)$ we have

$$
f(x_{22}, y_{21})u_{2j} = f(x_{22}u_{2j}, y_{21}u_{2j}) = f(x_{22}u_{2j}, 0) = 0
$$

which results that $f(x_{22}, y_{21})R_{2j} = 0$. It follows that $f(x_{22}, y_{21})R = 0$ which implies that $f(x_{22}, y_{21}) = 0$, by condition (i) of the Theorem 2.1.

Lemma 2.5. $f(x_{21}, y_{21}) = 0$ *, for arbitrary elements* $x_{21}, y_{21} \in R_{21}$ *.*

Proof. For arbitrary elements z_{12} of R_{12} and u_{1j} of R_{1j} ($j = 1, 2$) we have

$$
f(x_{21}, x_{21})z_{12}u_{1j} = 0
$$

which implies that $f(x_{21}, y_{21})z_{12}R_{1j} = 0$. Also, for an arbitrary element u_{2j} of R_{2j} $(j = 1, 2)$ we have

$$
f(x_{21}, y_{21})z_{12}u_{2j} = f(x_{21}z_{12}u_{2j}, y_{21}z_{12}u_{2j})
$$

= $f(x_{21}z_{12}(u_{2j} + z_{12}u_{2j}), y_{21}(u_{2j} + z_{12}u_{2j}))$
= $f(x_{21}z_{12}, y_{21})(u_{2j} + z_{12}u_{2j}) = 0,$

by Lemma 2.4, which results that $f(x_{21}, y_{21})z_{12}R_{2j} = 0$. It follows that $f(x_{21}, y_{21})z_{12}R = 0$ which implies that $f(x_{21}, y_{21})R_{12} = 0$. From conditions (ii), (iii) and (v) of the Theorem 2.1, we conclude that $f(x_{21}, y_{21})=0$. \Box

Lemma 2.6. $f(x_{12} + x_{21}, y_{12} + y_{21}) = 0$, *for arbitrary elements* $x_{12}, y_{12} \in R_{12}$ *and* $x_{21}, y_{21} \in R_{21}$ *.*

Proof. For an arbitrary element u_{1j} of R_{1j} ($j = 1, 2$) we have

$$
f(x_{12} + x_{21}, y_{12} + y_{21})u_{1j} = f((x_{12} + x_{21})u_{1j}, (y_{12} + y_{21})u_{1j})
$$

= $f(x_{21}u_{1j}, y_{21}u_{1j}) = f(x_{21}, y_{21})u_{1j} = 0,$

by Lemma 2.5, which implies that $f(x_{12} + x_{21}, y_{12} + y_{21})R_{1j} = 0$. Also, for an arbitrary element u_{2j} of R_{2j} ($j = 1, 2$) we have

$$
f(x_{12} + x_{21}, y_{12} + y_{21})u_{2j} = f((x_{12} + x_{21})u_{2j}, (y_{12} + y_{21})u_{2j})
$$

= $f(x_{12}u_{2j}, y_{12}u_{2j}) = f(x_{12}, y_{12})u_{2j} = 0,$

by Lemma 2.3, which results that $f(x_{12} + x_{21}, y_{12} + y_{21})R_{2j} = 0$. It follows that $f(x_{12} + x_{21}, y_{12} + y_{21})R = 0$ which allows us to conclude that $f(x_{12} + x_{21}, y_{12} + y_{21})R = 0$ $x_{21}, y_{12} + y_{21}) = 0.$

Lemma 2.7. $f(x_{11} + x_{21}, y_{11} + y_{21}) = 0$, *for arbitrary elements* $x_{11}, y_{11} \in R_{11}$ *and* $x_{21}, y_{21} \in R_{21}$ *.*

Proof. For arbitrary elements z_{12} of R_{12} and u_{1j} of R_{1j} ($j = 1, 2$) we have

$$
f(x_{11} + x_{21}, y_{11} + y_{21})z_{12}u_{1j} = 0
$$

which implies that $f(x_{11} + x_{21}, y_{11} + y_{21})z_{12}R_{1j} = 0$. Also, for an arbitrary element u_{2j} of R_{2j} $(j = 1, 2)$ we have

$$
f(x_{11} + x_{21}, y_{11} + y_{21})z_{12}u_{2j} = f((x_{11} + x_{21})z_{12}u_{2j}, (y_{11} + y_{21})z_{12}u_{2j})
$$

= $f((x_{11}z_{12} + x_{21})(u_{2j} + z_{12}u_{2j}), (y_{11}z_{12} + y_{21})(u_{2j} + z_{12}u_{2j}))$

$$
= f(x_{11}z_{12} + x_{21}, y_{11}z_{12} + y_{21})(u_{2j} + z_{12}u_{2j}) = 0,
$$

by Lemma 2.6, which results that $f(x_{11}+x_{21}, y_{11}+y_{21})z_{12}R_{2j} = 0$. This implies that $f(x_{11}+x_{21}, y_{11}+y_{21})z_{12}R = 0$ which yields that $f(x_{11}+x_{21}, y_{11}+y_{21})R_{12} =$ 0*.* From conditions (ii), (iii) and (v) of the Theorem 2.1, we conclude that $f(x_{11} + x_{21}, y_{11} + y_{21}) = 0.$

Proof of Theorem 2.1. Let *x, y* and *r* be arbitrary elements of R*.* Then

$$
f(x,y)re = f(xre, yre) = 0,
$$

by Lemma 2.7. This results that $f(x, y)$ Re = 0 which allows us to conclude that $f(x, y) = 0$, by condition (i) of the Theorem 2.1.

3 Some applications of the main result

In this section, we give some applications of our main result. We started by discussing the additivity of *n*-multiplicative generalized derivations.

Theorem 3.1. *Let* R *be a* $(n-1)$ *-torsion free associative ring containing a non-trivial idempotent e which satisfies the following conditions:*

- *(i)* $x \text{R}e = 0$ *implies* $x = 0$ *(and hence* $x \text{R} = 0$ *implies* $x = 0$ *);*
- (iii) $exeR(1-e) = 0$ *implies* $exe = 0$;
- (iii) $(1-e)xeR(1-e) = 0$ *implies* $(1-e)xe = 0$.

Then every n-multiplicative generalized derivation of R *is additive.*

The proof will be also organized in a series of lemmas. We begin with the following.

Let $g : \mathbb{R} \to \mathbb{R}$ be a *n*-multiplicative generalized derivation of R. Then there is an additive *n*-multiplicative derivation of R *d* such that

$$
g(a_1a_2\cdots a_n)=g(a_1)a_2\cdots a_n+\sum_{i=2}^n a_1a_2\cdots a(a_i)\cdots a_n,
$$

for arbitrary elements $a_1, a_2, \dots, a_n \in \mathbb{R}$. First, we note that

$$
d(e) = d(\underbrace{e \cdots e}_{n \text{ terms}}) = \sum_{i=1}^{n} \underbrace{\overbrace{e \cdots d(e)}^{i \text{ terms}} \cdots e}_{n \text{ terms}} = d(e)e + (n-2)ed(e)e + ed(e)
$$

which implies that $ed(e)e = 0$, since R is $(n-1)$ -torsion free. Hence, if $d(e) = a_{11} + a_{12} + a_{21} + a_{22}$, where a_{ij} is an element of R_{ij} $(i, j = 1, 2)$, then $d(e) = a_{12} + a_{21}$. Also,

$$
g(e) = g(\underbrace{e \cdots e}_{n \text{ terms}}) = \underbrace{g(e) \cdots e}_{n \text{ terms}} + \sum_{i=2}^{n} \underbrace{\underbrace{e \cdots d(e) \cdots e}_{n \text{ terms}}}_{n \text{ terms}} = g(e)e + ed(e).
$$

Hence, if $g(e) = b_{11} + b_{12} + b_{21} + b_{22}$, where b_{ij} is an element of R_{ij} $(i, j = 1, 2)$, then $b_{11} + b_{12} + b_{21} + b_{22} = b_{11} + b_{21} + a_{12}$ which implies that $a_{12} = b_{12}$ and $b_{22} = 0$. This results that $g(e) = b_{11} + a_{12} + b_{21}$.

Let *h* be the inner derivation of R determined by the element $a_{12} - a_{21}$. Then $h(x)=[x, a_{12} - a_{21}]$ for an arbitrary element *x* of R. In particular, we have $h(e) = [e, a_{12} - a_{21}] = a_{12} + a_{21}$. Let *H* be the generalized inner derivation determined by the elements $b_{11} + b_{21}$ and $a_{12} - a_{21}$. Then $H(x) =$ $(b_{11} + b_{21})x + x(a_{12} - a_{21})$ for an arbitrary element *x* of R. Similarly, we have $H(e) = b_{11} + a_{12} + b_{21}.$

Set the mappings $D, G : \mathbb{R} \to \mathbb{R}$ by $D = d - h$ and $G = g - H$. Then *D* is an additive *n*-multiplicative derivation of R and *G* is a *n*-multiplicative generalized derivation of R satisfying

$$
G(a_1a_2\cdots a_n)=G(a_1)a_2\cdots a_n+\sum_{i=2}^n a_1a_2\cdots D(a_i)\cdots a_n,
$$

for arbitrary elements $a_1, a_2, \dots, a_n \in \mathbb{R}$ and such that $D(e) = 0 = G(e)$. Moreover, the mapping g is additive if and only if G is additive.

From what we saw above, to prove the Theorem 3.1 we can, without loss of generality, replace the *n*-multiplicative derivation *d* by the *n*-multiplicative derivation *D* and the *n*-multiplicative generalized derivation *g* by the *n*-multiplicative generalized derivation *G.* Therefore, in the remaining part of this paper we will prove the additivity of the mapping *G.*

Lemma 3.2. $D(0) = 0$ *and* $G(0) = 0$ *.*

Proof. We easily see that $D(0) = 0$. This results that

$$
G(0) = G(\underbrace{0 \cdots 0}_{n \text{ terms}}) = \underbrace{G(0) \cdots 0}_{n \text{ terms}} + \sum_{i=2}^{n} \underbrace{0 \cdots D(0) \cdots 0}_{n \text{ terms}} = 0.
$$

Lemma 3.3. *D*(R_{ij}) ⊆ R_{ij} (*i, j* = 1*,* 2)*.*

Proof. For an arbitrary element x_{11} of R_{11} we have $D(x_{11}) = D(\underbrace{ex_{11}e \cdots e}_{n \text{ terms}})$ $eD(x_{11})e$ which is an element of R₁₁. Also, for an arbitrary element x_{12} of J. C. da Motta Ferreira and M. das G. Bruno Marietto 171

 R_{12} , then $D(x_{12}) = D(e \cdots ex_{12}) = eD(x_{12})$ and $0 = D(0) = D(\underbrace{x_{12}e \cdots e}_{n \text{ terms}}) =$

 $D(x_{12})e$. It follows that $D(x_{12})$ belongs to R₁₂. Similarly, we prove that for an arbitrary element x_{21} of R_{21} , $D(x_{21})$ belongs to R_{21} . Finally, for an arbitrary element x_{22} of R₂₂, then $0 = D(0) = D(e \cdots ex_{22}) = eD(x_{22})$ and $0 = D(0) =$
 n terms

 $D(\underbrace{x_{22}e\cdots e}_{n \text{ terms}}) = D(x_{22})e$. Therefore $D(x_{22})$ is an element of R₂₂. This proves

the Lemma. \Box

Lemma 3.4. *The following hold: (i)* $G(R_{1j}) \subseteq R_{1j}$ ($j = 1, 2$), *(ii)* $G(R_{11} +$ R_{21}) $\subseteq R_{11} + R_{21}$ *and (iii)* $G(R_{22}) \subseteq R_{12} + R_{22}$ *. Moreover* $G(x_{11} + x_{12}) =$ $G(x_{11}) + G(x_{12})$ *, for arbitrary elements* x_{11} *of* R_{11} *and* x_{12} *of* R_{12} *.*

Proof. Let x_{1j} be an arbitrary element of R_{1j} ($j = 1, 2$). Then $G(x_{1j}) =$ $G(e \cdots ex_{1j}) = G(e)e \cdots x_{1j} + \sum_{i=2}^{n} e \cdots D(e) \cdots x_{1j} = eD(x_{1j}) = D(x_{1j})$ which nerms is an element of R1*j,* by Lemma 3.3. Thus, for an arbitrary element $x_{11} + x_{12}$ of eR we have $G(x_{11} + x_{12}) = G(\underbrace{e \cdots e(x_{11} + x_{12})}_{n \text{ terms}}) =$ $G(e)e \cdots (x_{11} + x_{12}) + \sum_{i=2}^{n} e \cdots D(e) \cdots (x_{11} + x_{12}) = eD(x_{11} + x_{12}) = n$ terms $D(x_{11}) + D(x_{12}) = G(x_{11}) + G(x_{12})$, by the preceding case. This allows us to conclude that $G(R_{1j}) \subseteq R_{1j}$ ($j = 1, 2$) and that $G(x_{11}+x_{12}) = G(x_{11})+G(x_{12})$. Also, for arbitrary elements x_{11} of R₁₁ and x_{21} of R₂₁, we have $G(x_{11} + x_{21}) =$ $G(\underbrace{(x_{11} + x_{21})e \cdots e}_{n \text{ terms}})$ = $G(\underbrace{x_{11} + x_{21})e \cdots e}_{n \text{ terms}})$ $+\sum_{i=2}^{n} (x_{11} + x_{21}) \cdots D(e) \cdots e = G(x_{11} + x_{21})e$. This results that $G(R_{11} + n_{21}) \cdots$ R_{21}) $\subseteq R_{11} + R_{21}$. Yet, for an arbitrary element x_{22} of R_{22} write $G(x_{22}) = d_{11} +$ $d_{12} + d_{21} + d_{22}$. Then $0 = G(0) = \underbrace{G(x_{22}e \cdots e)}_{n \text{ terms}} = G(\underbrace{x_{22}})e \cdots e}_{n \text{ terms}}$ $+\sum_{i=2}^{n} \underbrace{x_{22} \cdots D(e) \cdots e}_{n \text{ terms}} = G(x_{22})e = d_{11} + d_{21}$. This shows that $G(x_{22}) =$ $d_{12} + d_{22}$. This proves the Lemma. \Box

Proof of Theorem 3.1. From the hypotheses, let *g* a *n*-multiplicative generalized derivation of R and *d* an additive *n*-multiplicative derivation of R such that

$$
g(a_1 \cdots a_n) = g(a_1) \cdots a_n + \sum_{i=2}^n a_1 \cdots d(a_i) \cdots a_n,
$$

for arbitrary elements $a_1, \dots, a_n \in \mathbb{R}$. Set $f : \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ by $f(x, y) = G(x +$ y) − *G*(*x*) − *G*(*y*)*,* for arbitrary elements *x, y* ∈ R*.* Then $f(x, 0) = f(0, y) = 0$ *,* for arbitrary elements $x, y \in \mathbb{R}$. Also, for arbitrary elements x_{11}, y_{11} of \mathbb{R}_{11} and x_{21}, y_{21} of R₂₁ we have $f(x_{11} + x_{21}, y_{11} + y_{21}) = G((x_{11} + x_{21}) + (y_{11} + y_{21}))$ (y_{21})) – $G(x_{11} + x_{21}) - G(y_{11} + y_{21}) = G((x_{11} + y_{11}) + (x_{21} + y_{21})) - G(x_{11} + y_{11})$ x_{21}) − *G*($y_{11} + y_{21}$) which is an element of R₁₁ + R₂₁, by Lemma 3.4(ii). This shows that $f(\text{Re}, \text{Re}) \subseteq \text{Re}$. Yet, for arbitrary elements $x, y, u_1, \dots, u_{n-1} \in \text{Re}$ we have

$$
f(u_1 \cdots u_{n-1}x, u_1 \cdots u_{n-1}y) = G(u_1 \cdots u_{n-1}x + u_1 \cdots u_{n-1}y)
$$

\n
$$
-G(u_1 \cdots u_{n-1}x) - G(u_1 \cdots u_{n-1}y) = G(u_1 \cdots u_{n-1}(x+y))
$$

\n
$$
-G(u_1 \cdots u_{n-1}x) - G(u_1 \cdots u_{n-1}y) = G(u_1) \cdots u_{n-1}(x+y)
$$

\n
$$
+ \sum_{i=2}^n u_1 \cdots D(u_i) \cdots u_{n-1}(x+y) - G(u_1) \cdots u_{n-1}x
$$

\n
$$
- \sum_{i=2}^n u_1 \cdots D(u_i) \cdots u_{n-1}x - G(u_1) \cdots u_{n-1}y - \sum_{i=2}^n u_1 \cdots D(u_i) \cdots u_{n-1}y = 0
$$

and

$$
f(x,y)u_1\cdots u_{n-1} = (G(x+y) - G(x) - G(y))u_1\cdots u_{n-1}
$$

\n
$$
= G(x+y)u_1\cdots u_{n-1} - G(x)u_1\cdots u_{n-1} - G(y)u_1\cdots u_{n-1}
$$

\n
$$
= G(x+y)u_1\cdots u_{n-1} + \sum_{i=2}^n (x+y)u_1\cdots D(u_i)\cdots u_{n-1}
$$

\n
$$
-G(x)u_1\cdots u_{n-1} - \sum_{i=2}^n xu_1\cdots D(u_i)\cdots u_{n-1}
$$

\n
$$
-G(y)u_1\cdots u_{n-1} - \sum_{i=2}^n yu_1\cdots D(u_i)\cdots u_{n-1}
$$

\n
$$
= G((x+y)u_1\cdots u_{n-1}) - G(xu_1\cdots u_{n-1}) - G(yu_1\cdots u_{n-1})
$$

\n
$$
= f(xu_1\cdots u_{n-1}, yu_1\cdots u_{n-1}).
$$

Corollary 3.5. *Let* R *be a* (*n*−1)*-torsion free prime associative ring containing a non-trivial idempotent e. Then every n-multiplicative generalized derivation of* R *is additive.*

The ideas that follow below are similar those presented by Wang [4].

Let X be a Banach space. Denote by $\mathcal{B}(X)$ the algebra of all bounded linear operators on X*.* A subalgebra of B(X) is called a *standard operator algebra* if it contains all finite rank operators. It is well known that every standard operator algebra is prime. Moreover, if $\dim X \geq 2$, then there exists a nontrivial idempotent operator of rank one in $\mathcal{B}(X)$. Therefore, it follows from Corollary 3.5 that:

Corollary 3.6. *Let* X *be a Banach space with* dim $X > 2$, A *be a standard operator algebra on* X*. Then every n-multiplicative generalized derivation of* A *is additive.*

References

- [1] M. N. Daif, *When is a multiplicative derivation additive?*, Internat. J. Math. Math. Sci. **14** (3) (1991) 615-618.
- [2] M. N. Daif and M. S. Tammam El-Sayiad, *Multiplicative generalized derivations which are additive*, East-west J. Math. **9** (1) (1997), 31-37.
- [3] W. S. Martindale III, *When are multiplicative mappings additive?* Proc. Amer. Math. Soc. **21** (1969) 695-698.
- [4] Y. Wang, *The additivity of multiplicative maps on rings*, Comm. Algebra **37** (2009) 2351-2356.