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Abstract

One of important study in Universal algebra is to classify algebras
into varieties and classify varieties into hypervarieties. The concept of
a hypersubstitution, which is a tool used to study hyperidentities, was
introduced by K. Denecke, D. Lau, R. Poschel and D. Schweigert [3]. In
2000, S. Leeratanavalee and K. Denecke [6] extended the above concept
to the concept of a generalized hypersubstitution. In Universal algebra,
we do not study only algebras which have one base set but many base
sets. In 1970, G. Birkhoff and John D. Lipson [1] extended the concept of
base structure of algebras from one-sorted to many-sorted, that is called
heterogeneous algebras or many-sorted algebras. In this present paper,
we show that the set of partial generalized hypersubstitutions S (4)-
Hypg forms a monoid.

*Corresponding author.

Key words: many-sorted algebra, i-sorted partial ¥-generalized hypersubstitution, i-sorted
Y-algebras, X-terms.

2010 AMS Mathematics Classification: 08A99; 03C05.

153



154 Some Types of Partial Generalized Hypersubtitutions of...

1 Introduction

In computer programming, there are two major types of data. The first one
is a basic type such as integer, float, character and string which can be used
to solve some simple problems. However, it proves to be difficult to solve
more complex problems using only this type of data, so the abstract data type
(ADT) has been invented. We can describe the structure of ADT as an algebra.
In Universal algebra, we have not studied only structure of algebras, but we
classify algebras using identities into collections called warieties and classify
varieties into a high level of varieties called hypervarieties.

For the usual definition of algebra, when we mention about an algebra, we
always imagine an algebra which has only one base set. It is very interesting
to study an algebra which has more than one base set and all of operations
can be defined on different base sets. In some situations, for instance, colors,
as we know all colors can be created by mixing the primary colors together. If
we let the mixing of two colors and the mixing ratio be the operations and the
collection of all colors and the amount of each color added be the base sets,
then we can explain this situation using many-sorted algebra. The concept
of many-sorted algebras was introduced in 1970 by G. Birkhoff and John D.
Lipson [1]. A vector space V over field F is one of examples of many-sorted
algebra.

Let I be a nonempty set, I* := | J I" and ¥ C I* x I with ¥,, := S0 I+,

n>1
Let A := (A;)ier be an I-sorted set, an I-indexed family of sets, where A; is
the set of elements of sort i of A, for i € I. A pair A := (A, ((f)r)rek, vex)
is called an I-sorted Y-algebra where f:;‘ s Agy X ... X Ag, — A; is a mapping,
is called an I-sorted n-ary operation on A, where v := (k1,...,kp,i) € I"*!
and K is the set of indices with respect to 4. For v € I'*, let (j) denote the
j-th component of ~.

Example 1.1. A vector space over field F':

The structure A := ({V, F'}, {+2“17171), -2427171)}) is an [-sorted X-algebra with
I={1,2}, A={V,F}and ¥ = {(1,1,1), (2,1, 1)}, that is there are two binary
operations consist of +241 1,1y (addition) and -2427171) (scalar multiplication), i.e.,

+iiy VXV =V and {4, i FxV =V

For i € I, we set A,(i) := {a € I""] a(n + 1) = i}, A(i) := U A, (7) and
n=1

A= AG).

el

Let ,,(3) :={y € Zpn| vy(m + 1) =4} and X(i) := U 3 (2).
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The concept of terms for many-sorted algebras was introduced by K. De-
necke and S. Lekkoksung [4] in 2008.

Definition 1.2. Let n € N* and I be an indexed set. Let X" := (X™),¢;
be an I-sorted set of m variables, is called an n-element I-sorted alphabet,
with Xf") = {zi1, T2, ..., Tin}, 1 € I and let X = (X;);er be an I-sorted set of
variables, is called an I-sorted alphabet, with X; = {1, 22, 243, ...},7 € I. Let
((fv)k)kelq,yeg be a Y-sorted set of operation symbols. Then for each 7 € I,
a set W, (i) which is called the set of all n-ary Y-terms of sort ¢, is inductively
defined as follows:

1 We() = x™,

2. Wi () == W) UA{fy(trys oo trn) | v = (k1o bnyi) € 8, ty, €
W(kj)}, 1 € N. Here we inductively assume that the set W) (i) are
already defined for all sorts i € I.

Then W, (i) := U W (i) and W (i) := U W, (i). W(i) is called an I-sorted
=0 neN

set of all 3-terms of sort i. The set Wx(X) := (W (i));er is called an I-sorted

set of all X-terms and its elements are called I-sorted X-terms.

To study hypervariety, we first need to study hypersubstitutions. In order
to do that, we need to define a binary operation on a set of hypersubstitutions
which satisfies an associative law. This also holds true in the case of many-
sorted algebra. For each ¢ € I, an arbitary mapping

o {fy |v€X@)} — W(3)

is called a Y-generalized hypersubstitution of sort i. The set of all X-generalized
hypersubstitutions of sort ¢ is denoted by 3(i)-Hypa. To define a binary op-
eration on X(i)-Hype, we need the concept of the superposition operation.

Definition 1.3. The superposition operation
Sp W (i) x W(kt) X ... x W(ky,) — W(3),
for 8= (ki,...,kn, 1) € A, is defined inductively by the following steps:
1. If t=u=z;; € X;, then

(a) Sg(xl'j,tl, ...,tn) = T4y if ’L?é k‘j,Vj and,
(b) S’g(xij,tl,...,tn):tj ifi:kj,lgjgnand,
(C) Sg(xl'j,tl, ...,tn) = Tij if j > n.
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2. If t= fy(s1,..., Sm) € W(3), fory = (i1, ..., Im, 1) € L and sq € W(ig),1<
q < m, and assume that Sg_(sq,t1, ..., tn) With 8, = (k1, ..., kn, iq) € A(ig)
are already defined, then

Sg(fv(sl, ...,Sm),tl, ,tn) = f,y(Sgl (Sl,tl, ...,tn), ...,ng(sm,tl, ,tn)),

for tj S W(k'J), 1 S] <n.

For any X-generalized hypersubstitution o; of sort ¢ can be extended to a
mapping &; : W (i) — W (i) is definded by

1. &[x”] 1= Tij, for Tij € Xl',

2. Gfy(tr, s tn)] -

= S4(01(F), Bmalta], s G t]) Where 7 = (1, )
andtjEW( J) IS

< n, assume that Ok, [t;] are already defined.

Since the extension of a Y-generalized hypersubstitution of sort ¢ is unique,
we can define a binary operation oy, on X(i)-Hypc by

(01)i o (02)i := (1) © (02)s,

for (o1)i, (02); € X(i)-Hype and o is the usual composition of mapping. Let
(0id)i € X(i)-Hype which maps each operation symbol f, to the 3-term
fv(xkll, ...,xknn), for v = (k‘l, ...,k‘n,i) S E(’L), i.e.,

(Uid)i(fv) = f’Y(xklla "'7xknn)'

Example 1.4. Let ¥ = {(2,2,1),(2,1,1,1)}, i.e., there are two operations
f’Y’ fﬂ Wlth 7 - (25 2) 1))

8 =1(2,1,1,1). Let 01,09,03 € X(i)-Hypg such that o1(fy) = z13,01(f3) =
z13, 02(fy) = fa(xor,212,715), 02(fs) = fy(z22,721) and o3(fs) =
fﬂ(ﬂ?gg, f,y(3325, xQQ), x15). We have

(01 0 (02 06 03))(f3) = (61 0 (62 0 03))(f5) = 61[52[03(f5)]]
=01|0 2[fﬂ(3323, f7($25,$22) 3315)]]

610

11S8(02(f3), 23, G| f+ (w25, 22)], T15)]
[Sa(

[

I
Q

1 SB f ($22,$21),$23,fﬂ($25,$12,$15),$15)]
= 01[fy (w22, 23)]

= Sy(01(fy), w22, T23)

= Sy (w13, T22, T23) = T13,

|
Q
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(01 0¢ 02) 0 03)(f5) = (01 0 02) "[o3(f3)]
= (01 06 02) " [f3(w23, fr (25, T22), T15)]
(01 06 02)(f3), w23, (01 0 02) " [f+ (225, T22)], T15)

d1loa(f3)], 23, 15, T15)

That is (07 o 02) ok, 03 # 01 ok, (02 ok, 03).

we figured out that (X(i)-Hypc, ok, (0ia)i) is a non associative (with iden-
tity). So, we need to put some conditions for each 3-generalized hypersubsti-
tution of sort 7, ¢ € I. In this paper, we consider the structure of many-sorted
algebra which all of operation symbols of sort i have the same arity n (n > 2)
and have the same structure, i.e., for each i € I, (i) = {7} and each k € K,
(f)k is n-ary. We denote a set of type of operation symbols by 1117 (3).

In 2006, S. Busaman and K. Denecke [2] established the definition of a
partial hypersubstitution. Motivated by these concepts, we are interested to
study partial generalized hypersubstitutions in many-sorted algebras.

2 Main Results

For i € I, a partial generalized hypersubstitution on {f,| v € Zl"(4)} is a
partial function
oi: {f+| v € BII"(0)} —— W),

that is domo; C {f,| v € S1"(3)} and f, € domo; if 0;(f,) is defined. Denote
SHln(i)-PHypg the set of all partial generalized hypersubstitutions of sort i.
If domo; = {f,| v € S!1I"(i)}, we have o, is a generalized hypersubstitution
and let X" (7)-Hype be the set of all generalized hypersubstitutions of sort
7.

Next, we give the definition of a partial superposition operation and prove
some of it properties.
Definition 2.1. For 8 = (k1,...,kn, i) € A, the partial superposition opera-
tion

Sg W (i) x W(ky) x ... x W(k,) —o— W(i)

is a partial function of the superposition operation Sz which is defined if all of
n + 1 input terms are defined.

Lemma 2.2. Let m,n € N* with m < n. Then

Su(s, S, (I, t1, oo tm), - Sy (s by, tm)) = S (S5(s,01, - ln) b1y - )
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where 0 = (i1, ...,9n,9),7y = (i1,...,0m, 1) and B; = (i1,. .., %m, ;).
Proof. We have
S5, Sg, (lsthy s tm)s- ooy S, (lns b1, - b)) is defined <
5,85 (L t1, .. tm), Vi € {1,...,n} are defined. <
s,lj,ty are defined, Vj € {1,...,n}, g€ {1,...,m}. &
S;(S/ﬂ(s,ll, coyln) b, oo ty) is defined.

Next, we show that Su(s, S5, (It tm), .-, S, (lnstr, -y tm)) =

Sv(Slﬂ(s,ll, cooln) t1, ..o tm). We prove by induction on the complexity of

the Y-term s € W (7).

(1) s = x;; € X(i), we consider into three cases.
Case 1: 1 # k.

Sa(5,85, (lsthy e stim)s ey S (st b)) =
= S5(xij, S, (s trs oyt o3 S (lns by -y )
= 1
= S;(xij,tl, costm)
=S (Sy(@iy 11y ln) byt

Case2:i=1;1<j7<n.

Slg(s, Slgl (L, b1, ey tm),s - .,Slﬂn(ln,tl, tm)) =
= S5(@ig Sy (bt s S (st )
=S5 (i t1, o tm)
=S, (Sp(ijoliy oy Ity )
= S (S5(iji by ln)s s ).

Case 3: 7 > n.

Sa(5,85, (lsthy - stm)s ooy S (st b)) =
= Sy(xij, S, (s trs- oy tn) sy S (Lt -y )
= 1
= S;(xij,tl, costm)
=S (Sy(@iy 11y ln) byt
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(i1) s = fa(s1,...,8,) € W(i) with a = (p1,...,pn,i) € SHIA(G) and
s € W(p,),1 <r <h.

V/Ve /assume that Sar(sr,Sﬂl(ll,tl,...,tm),...,Sﬂn(ln,tl,...,tm)) =
= S%(Sar(sr,ll,...,ln),tl,...,tm) where o, = (k1,...,kn,pr) € A(p,) and
Y= i1y im,Dr) € A(pr), 1 <7 < h. Then

Sy, S5, (It o tm) ooy Sy (It o ) =
= S5(falstsewvs0),Sa, (Lstrseoostim)y - Sy (st oy tn))
= fal(Sh, (51,85, (L try o itim)y oo os Sy (s tise oo tm))s s
S (50, S, (L ty, oty Sy (ns b, tm))

= fa(S, (Sa, (51, 0s oy In) st ooyt

’

S (S (Sha bty b))
(Fa (S, (51,005 -y )s ooy Sy (Shy 1y oy 1))yt ooy )

- S;
= S.(S5(falste-worsn)ilise ey ln) tey .oy t).

Then we complete the proof of this lemma. [l

For o; € Z1I7(3)-PHypg, it can be extended to partial mapping &; : W (i) —o
— W (i) defined by

1. 6'1[33”] = Tij, for Tij € W(’L),

2. &3l fy(tr, .. ta)] = S (03(fy), 61[ta], - ., Gultn]), wherey = (ki, ..., kn,i) €
$Hn(i) and t; € W (k;) such that t; € domdy,, 6x,[t;] are already de-
fined and f,, € domo;.

Next, we define a binary operation o}, on X1 (i)- P Hype by for (1), (o2): S (i)-
PHypg,

(01)i 0p (02)i := (61)i 0 (02)i

and dom((01); o, (02):) = {fy] fy € dom(o2); and (02)(f,) € dom(é1):}-

Example 2.3. Let I = {1,2}, 5/12(1) = {(2,1,1)}, K(21,1) = {1,2} and
»h2(2) = {(2,2,2)}.
Denote v = (2,1,1),8 = (2,1,1) and a = (2,2,2). Let 01,00 € SH12(1)-
PHypg be defined by

o1(fy) = fo(fa(T24, T21), 211), 01(fp) = z11 and 02(f,) is undefined, o2(f5) =
fo (w23, T14).



160 Some Types of Partial Generalized Hypersubtitutions of...

Then (01 0}, 02)(fy) = (61 0 02)(fy) = 61[02(f5)] is undefined,

(01 0, 02)(f5) = (61 0 02)(f5) = 1[02(fs)] = G1[f (223, 214)]
= 522,1,1)(01(f7), T3, T14)
= 322,1,1)( fa(fa (w24, 721), 711), T23, T14)
= fo(fa(®a4, T23), T11)-

Example 2.4. Let I = {1,2} and i = 1. Let X1112(4) = {(2,1,1)} and K, =
{1,2}, i.e., there are two binary operation symbols (fy)1 and (fy)2 where v =
(2,1,1). Define o € X112(i)-PHype by o((fy)1) = 712, o((fy)2) is undefined.
Let t = T11, t1 = (f,y)l(xgl, .CC15) and to = (f,y)g(xgg, (f,y)l(xgg, xlg)). Then

518 1.y (@11 (f)1 (w21, 215),(f1)2 (w23, (1)1 (w22, 712)))] = 6[(f5)1 (w21, 715))]
= St (@((f)1), w21, 015)

’
= S 1, 1(@12, 221, 715) = 215,

and ‘9217171)( [w12], 6[(f5)1(z21, 215)], G[(fy)2(223, (f1)1 (722, 212))]) is undefined,
since &[(fy)2(x23, (fy)1(z22,x12))] is undefined. Hence, &[3217171)(t,t1,t2)] +
3217171)(&#],&[tl],&[tg]).

Lemma 2.5. Let o; € SU(i)-PHypg. If S, (6i[t],on[t1], - - -, Gk, [tn]) is
defined, then

FilSo(t e, ta)] = So(G3lt], Graltal, - -, Gre, [tn))
where « = (k1,...,kn,1) € A.

Proof. We prove by induction on the complexity of X-term ¢ of sort i.
Ift = Tij € X(’L),

So(64[t], Gay[t], - -, Gk [tn]) is defined = 6;[t], 63, [t;] exist.
= 04[t],t; € domby, that is t; exists,Vj € {1,...,n}.

Case 1 : i # k;. Then

&i[S;(t,tl, .. .,tn)] = &i[S;(xij,tl, .. .,tn)]

= Gilzij] = @i
= S (i on,[t1), - - O, [ta])

’

= Sa(&i[xij]a Tk [tl]a ooy Ok [tn])
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Case 2 : i =k;,1 < j <n. Then

&i[S;ﬁ,tl, .. .,tn)] = &i[Sa(xij,tl, .. .,tn)]

Case 3 : 7 > n. Then

1[3;)4(3:1]) tl) .. ,tn)]
Gilwij] = i
S;" (xij’ a-kl [tl]a RRE) a’kn [tn])

’

= Sa(&l[xlj]a &kl [tl]a .- '76-kn [tn])

I
Q>

6i[S, (ttes - )]

Ift = f(s1,...,8,) € W(i) with v = (i1,...,in,1) € ZHI"({).  Assume
that S, (65,[5;],0k,[t1], ... 0k, [tn]) is defined and &[S, (sj,t1,....tn)] =
S;](&lj [Sj],a'kl[tl], .. .,a'kn[tn]),()tj = (k'l, . ..,k‘n,ij),Vj. Then
So(6i[t], 6y [t1], - - -, Gk [tn]) is defined = &;[f,(s1, ..., 5n)], 64, [t;] exist.
= S (0i(fy), G051 - -, 6isn)), O, [t5] exist.

= fy € domo; and 6;,[s;], o, [t;] exist.
And we have,

GilSo(ttr, o )] = i[5 (fy (515 s Sn) b1, s tn)]
= 6i[fy (S, (51,815 -y tn)s ooy S (S tas ey tn))]
= S (05(f1), 50, [Sn, (51,110 o )]s o 60, (S, (Snu by t0)])
= S (05(f), S, (Gi[51), 01 [t1])s - - -y G [En])s - - -
So (G [5n), ks [t1]), - - O [ta]))

= Sa(Sfly(Ul(f’Y)a &il[sl]a . '7&% [Sn])a &kl [tl]a . '76-kn [tn])
= Sa(&l[fv(sl, .. .,Sn)], &kl [tl], .. .,&kn[tn])

So 63[Si(t 1, .. tn)] = S (63[t], or,[t1], - - - Ok, [tn])- O
Lemma 2.6. For (01);, (02); € S (i)-PHypa, ((01)i o (02)i) "= (61); o
(62)i.
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Proof. We prove by induction on the complexity of X-term ¢ of sort i.
Ift = Tij € X(’L)
Since ((01)i0}(02)i) " (61)i, (62); are defined on variables, z;; € dom((o1);0},
(Ug)i)A, dom(&l)i, dom(&g)l ,
So, x5 € dom((01)i0,(02)i)", dom((G1)i0(62):) and ((c1)i 0}, (02)i) " [wi5] =
zij = ((61)i © (62)s)[zij].
Ift = f(t,..., tn) € W (i) with v = (iy,. .., in,i) € S (3).
Assume that t; € dom((o1);, oi,j (02)i;) ", dom((61)s; © (62)s;) and ((o1)s; o;j
(02)i;)"[t;] = ((61)i, © (62)i,)[t5].
First, we show that t € dom((01)i o}, (02)i)" & t € dom((61)i 0 (62):)-
t=fy(t1,..., tn) € dom((o1); o; (02);) &
& fy € dom((01); 0}, (02)s) and t; € dom((o1)i, o (02)s,)"
= f,y S dom(ag)i, (Ug)i(f,y) S dom(&l)l
and tj S dom((&l)ij o (6'2)1])
& fy € dom(o2);,t; € dom(Gz);; and
(02)i(fy) € dom(61)i, (62)s,[t;] € dom(61)s,
=4 f,y(tl ..... tn) S dom(&g)l and (&2)1[]07@1 ..... tn)] (S dom(&l)l
&t = f’y(tl ..... tn) S dom((&l)l o (&2)1)

((01)i 0}, (02)i) " [t] = (1) 0} (92)i) " [f (t1, - - -5 tn)]
= S,(((01)i 0% (02)i) (f5), (G1)iy 05 (02)i,) " [ta], - - -, ((01)1,, ©F (02)i,) " [tn])
= S,(((61)i 0 (02)1)(f2), (1) 0 (62)i)[ta], - - ((61)i, © (62)i,,)[tn])
((
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(03)i))-

fy € dom(((01)i 0}, (02):) o}, (03)i) <

& fy € dom(((01)i o, (02)i) "o (03):)
(03)i(fy) € dom((01); o}, (2))"
(03)i(fy) € dom((61)i 0 (62)i)

& fy € dom(os); and
< fy € dom(os); and
& fy € dom(os); and

(03)i(fy) € dom(62)i, (62)il(03)i(fy)] € dom(G1);

Hence XM17(i)-PHypg satisfies an associative law. O

Let (04q); € Y!I"(i)-PHypg which maps each f, to the Y-term
Fy(@rte s on), Yy = (ks - .oy by i) € 2H(G). For oy € 217 (3)-PHypg,

dom((ciq)i o;, 0;) = domo; = dom(o; o;, (0id):)

and we can prove that (04); o; 0, = 0; = 0; o; (0id)i, or see [4].

Theorem 2.8. (S (i)-PHypg, o)) is a monoid.
Proof.By Lemma 2.7, we can conclude that (S1"(i)-PHypg,ol) forms a

monoid. O

Corollary 2.9. (X!1"(i)-Hype, ob) is a monoid.

Proof.This follows from the previous theorem which is stated that domo; =
{7 € 2@} O
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