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Abstract

In this paper, we determine the image of the indecomposable ele-
ments in Ext%* (Fa,F) for 6 < ¢ < 120 through the sixth Lannes-Zarati
homomorphism ¢g := 4,0[52.

1 Introduction and statement of results

Let D be the destabilization functor from the category M of left modules
over the mod 2 Steenrod algebra A to the category U of unstable modules,
which is the left adjoint to the forgetful functor Y — M. Hence, it is right
exact and, therefore, it admits the left derived functor Dg : M — U for each
s > 0. By definition of D (see Section 2), for any M € M, there exists a
natural homomorphism D(M) — Fy @, M, and then, this homomorphism in
turns induces natural maps i : D, (M) — Tor? (Fy, M) between corresponding
derived functors. In addition, as the result of Lannes and Zarati [16], for any
M € U and for each s > 0, there is an isomorphism ag(XM) : Dg(X1 M) —
YRsM, where Ry is the Singer construction, which is an exact functor from U
to itself (see Singer [18], [19], Lannes-Zarati [16], see also Hai [9], and citations
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therein for a detail description). Therefore, for any unstable A-module M,
there exists a natural homomorphism, for each s > 0,

(eM)# . R M — Tor?(Fy, ~°M).

Since the Steenrod algebra A has acted trivially on the target, (pM)# factors
through Fo ®, RsM. Hence, there exists a natural homomorphism

(M)# : (Fy ®4 ReM)" — Torf (Fa, 57°M) ~ Tor? ., (F2, M). (1.1)

Taking (linear) dual, we have a homomorphism (the so-called Lannes-Zarati
homomorphism), for each s > 0,

oM Ext (M, Fy) — Ann(Rg(M)#),.

Here, for any A-module N, we denote N7 the (linear) dual of N and Ann(N#)
the subspace of N# spanned by all elements annihilated by all Steenrod oper-
ations of positive degree. The Lannes-Zarati homomorphism is also considered
as an associated graded of the Hurewicz map

H : 73 (5% — H.(QuS?),

on the base-point component QyS° of the infinite loop space QS° = 1imQ" %" S°

(see Lannes and Zarati [14], [15] for the sketch of proof). Therefore, the study
of the Lannes-Zarati homomorphism is related to the study of the image of the
Hurewicz map and then Curtis’s conjecture on the spherical classes [8] (see [7]
for discussion).

The Lannes-Zarati homomorphism was first constructed by Lannes-Zarati
in [16]. Therein, they showed that <p]f2 is an isomorphism, <p§2 is an epimor-
phism. Later, Hung et. al also proved ¢"2 is trivial in any positive stems for
3 < s <5 (see [11] for the case s = 3, [10] for the case s = 4 and [12] for the
case s = 5). The results of Hung et. al essentially based on the information of
“hit” problem for the Dickson algebra. Since the “hit” problem for the Dickson
angebra of six variables is still unsolved, it is difficult to apply this method for
©g”-

In this paper, we use the method of Chon-Nhu [6, 7] to determine the image
of <p]g2. Thereby, we obtain the following result.

Theorem 1.1. The homomorphism <p]g2 : EXti’6+t(F2,F2) — Ann((ReF2)%);
is trivial on indecomposable elements in Exti’t(lﬁ‘g, Fy) for 6 <t < 120.

The advantage of this method is to avoid using the knowledge of the “hit”
problem for the Dickson algebra.
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2 Preliminaries

Denote M as the category of graded left A-modules and degree zero A-linear
maps. An A-module M € M is called unstable if S¢'z = 0 for i > degx and
forall x € M.

Given an A-module M and an integer s, let 3°M denote the s-th iterated
suspension of M. We define (X*M)"™ = M™%, then an element in degree n of
3°M is usually written in the form ¥*m, where m € M™%,

Let U is the full subcategory of M of all unstable modules. The destabi-
lization functor D: M — U is the left adjoint to the inclusion 4 — M. It can
be described more explicitly as follows:

D(M) := M/EM,

where EM := Spang,{Sq¢'z : 2i > deg(x),z € M} is an A-submodule of
M, that is a consequence of the Adem relations. In particular, EM is the
subspace of elements in a negative degree if M is a graded vector space which is
considered as an A-module with trivial action. Then D(M) is an A-submodule
of M consisting of all elements in non-negative degrees. It is simple to observe
the following construction.

For any A-module M, then there is an A-homomorphism D(M) — D(Fa® 4
M), which is induced by the projection M — Fo® 4 M and the canonical embed-
ding D(Fy ®4 M) — Fy ® 4 M. Thus, there exists a natural A-homomorphism
D(M) — Fo ®4 M which is the composition

D(M) — D(Fy 4 M) — Fy ®4 M.
Therefore, maps between corresponding derived functors are induced by
this exact sequence

iM: D, (M) — Tor?(Fy, M).

S

The possibility of understanding the homology of the Steenrod algebra via
knowledge of derived functors of the destabilization functor is raised by the
natural map i. However, computing D is generally very difficult, except in
one important situation in which Lannes and Zarati [16], [21] discovered that
it can be described in terms of the Singer functors Rs.

We recall the definition of the Lannes-Zarati homomorphism. For any A-
module M, let the short exact sequence

0-PLOM—>PoM—X"'M -0,

where, P; = Fy[z1] be the polynomial algebra over Fy generated by x; with

|z1| = 1 and P is the A-module extension of P; by formally adding the generator

27! in degree —1. The action of A on P is given by S¢™ (z71) = 27~ L.
Moreover, we have the following theorem.
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Theorem 2.1 (Lannes and Zarati [16]). For any unstable A-module M,
the homomorphism as(XM) : Dy(X17°M) — YR.M is an isomorphism of
unstable A-modules.

For any unstable A-module M and for s > 0, there exists a homomorphism
(@M)# such that the following diagram commutes (see Chon-Nhu [7] for a
detail construction):

L s g @s(BM)
D, (S5 M) "5 SRM > SP@ M (2.1)

izl—le
: (@H*

Tor? (Fy, S1=5M).

where, Py = Fa[zy, 22, -, 2] be the polynomial algebra over Fy generated by
the indicated variables, each of degree 1.

(@M)# factors through Fa® 4 YR M because of acting trivially on the target
of the Steenrod algebra A. Therefore, after desuspending, we obtain the dual
of the Lannes-Zarati homomorphism

(e (F2 ®4 ReM)" — Tor} (F2, £ °M) =~ Torl . ,(Fa2, M).
The linear dual
oM Ext® ST M,Fy) — (Fy @4 ReM)¥ = Ann((R.M)#),,

is the so-called Lannes-Zarati homomorphism.

In [1] (see also [2]), for computing the cohomology of the Steenrod algebra,
Boustield et. al defined a differential algebra and so-called the Lambda algebra.
The dual of Lambda algebra as differential Fo-module is isomorphic to I'" (see
in [13]). Because the sign is not compatible, extending an isomorphism between
chain complexes I'" M and A# @ M is difficult. Therefore, as naturally, we used
the opposite algebra of the Lambda algebra, also denoted A, which corresponds
to the original Lambda algebra under the anti-isomorphism of differential Fo-
modules. In the literature, it is also called the Lambda algebra.

The Lambda algebra, A, which is defined as the differential, graded, associa-
tive algebra with unit over Fo, is generated by \;,7 > 0, of degree i, satisfying
the Adem relations

t—j—1
)\i)\j = Z ( 2% — i > )\i+j—t)\t; (22)
t

for all 4,j > 0. Here (}) is interpreted as the coefficient of z* in expansion of
(z+1)™ so that it is defined for all integer n and all non-negative integer k (see
Chon-Ha [5]).
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Fori;,j =1,---,s is non-negative integers, a monomial A\ = A;; Aj, - - Ai.
in A is called the monomial of the length s. And \; is also called an admissible
monomial if iy < 2i5, -+ ,is_1 < 2is, and define the excess of A; or I to be

exc(Ar) = exe(l) =iy — ZZJ
=2

The Dyer-Lashof algebra R is an important quotient algebra of the lambda
algebra over the ideal generated by the monomials of negative excess. Let the
canonical projection m : A — R, put Qr = Q"*Q% ---Q% be the image of \;
under 7. Let R4 be the subspace of R spanned by the monomials of length s.

From the results of Chon-Nhu [6], we have

Proposition 2.2 (Chon-Nhu [6, Proposition 6.2]). The projection
g i A @Ff — (RFy)¥,

given by
M@l [Q el

is a chain-level representation of the mod 2 Lannes-Zarati homomorphism @2 .

Proposition 2.3 (Chon-Nhu [6, Proposition 6.3]). The following diagram
15 commutative

S 0
Ext’*H(Fy, Fay) —— Ext 26+ (Fy, Fy)

wi{ },gg

(F2 ®4 RyF2)} o (F2 ®4 RF2)F, -

3 The proof of Theorem 1.1

In this section, we use the chain-level representation map of the %2 constructed
in the previous section to investigate the behavior of the sixth Lannes-Zarati
homomorphism <p]g2.

Lemma 3.1. If \; € A, and \j € Ay such that 35*(\;) = 0 or @;2(As) =0
then 352 ,(ArAy) = 0.

Now, we need to prove Theorem 1.1
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Proof. From Chen’s result [4], indecomposable elements in Ext’"(Fy, Fy) for
6 <t <120, is listed as follows

(S)t:{

(5)0:{

eoA1A12 + ()\%)\11)\2 + )\%)\2)\3))\1)\10 + fo()\g)\lo
FA3A0) A2 A2 A Ao + (AZAoAs + AZA11 Ao
FAsAAZAs + A3 AoAs A2 + A2AuAaAs)Ar
+()\3)\11)\9 + )\23)\(2) + A AsA11 + )\7)\9)\7))\(2])\7
FAZAATAAT + foA2 + (AZA11As + AZAaAs)As A
FAZ(AAA2 4 AoA10A2) + (A2Ag + AgAZ) AgA2
FAZAAGA2

€ Ext % (Fy, Fo);

Ms(A2 A2 A1 A8 + A1 A3A6) + A2X6 A3 00 4 91300
+(A15A3X006 + AT AoAs Az + A1 A Aada) AsAs
FA15(A1 A2 A Ag + A2 A6 + A Aadods + Az dads Ay
+A3 A0 + A3 Aadads + A AaAeAz) As + A1sAZ Ao ds My
FA15(AsA3 + M AaAs A + APAs A + A As A3

FA1 X6 A8 + AsA3AaA2) Az + A5 As Az Aa A1 g

€ BExt%*®(Fy, Fy);
noAs + ()\7)\15)\3)\0)\8 + )\%)\5)\9)\54‘
A A15A3 206 + A15A3A7A5A3) A3

€ Ext%*?(Fy, Fy);

AZ A3 s + [Aas(A2Agha + A Adsdods + A3
FAA2N2) + A ArsAshods + A2As AroAs

F A5 A3 A As A 4+ AZAs Az ho] A7 + A2 [ Aoda A As
FOZA + AoAado + AaA2) A+ A2Aodg

F(2Xs5 + AoAs Ao + AsAZ) A

+(MoAs 4 AAo)AZ] + AZ Ao

€ BExt%* (Fy, Fy);

C1 A7 A5 + [()\%5)\5)\7 + AMsA11 A7 g + )\%)\23))\54-
)\%5)\11)\0)\6 + )\7)\23)\15)\% + )\%5)\9)\5)\3

€ BExt%%(Fy, Fy);

(6) G = {D1(0)A2} € Ext5(Fy, Fy);
(7) Dy = {)\47)\11)\3} S EXti’ﬁAl(FQ, ]FQ);
(8) A = {D1(0)Ag + Aardoro + A2 A2 A6 A3} € ExtS %" (Fy, Fy);
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c2[AoA2A1s + A2 A3 A5 + AoAs A4 + A2 s i3
FA6 A1 A13 + AoAgA12 + )\(2])\20 + AgAgA12

+AgA3A11 + )\0)\%0 + AsA2 A0 + (AgAa + AigA1) Ao
+(A6 A7 + AsAs) A7 + )\10)\§] + )\%5)\11)\2)\1)\17
+(A15A11A7 A0 A8 + Af5A13A7A0) A1 + A3t foAie
+)\%5)\4)\2)\10 + Dy (0))\9 + )\%5 ()\13)\7)\4)\7
+A15 0 1076) + [)\31()\3)\9 + )\9)\3))\9 + A31 A3

(9) A = (MoAs + AsA11) A7 + )\%5()\11)\8 + A5A1)A6] A6
+[)\%5()\15)\2)\9 + )\15)\10)\1) + )\31()\3)\11)\8
+A3A9A5As + )\g)\s + )\11)\%)\12 + ()\%)\9 + )\9)\3))\10
+)\7()\1)\9 + )\9)\1))\8 + )\7()\5)\7)\6 + )\9)\5)\4))])\5
+[)\%5()\15)\2)\11 4+ A15A5A8 + A58 A5 + )\%1)\6)
+)\31()\11)\%)\14 + )\%)\8)\13 + )\%)\9)\12 4+ A3 11 A2 11
+)\§)\11)\10 + A3A9 A5 10 + A1 A7 Ao A9

+A7 A5 78 + A3 11 A7 6 + )\11)\7)\4)\5)])\3

€ ExtS% (Fy, Fy);
(10) .A” = {Dl (O))\lg =+ )\%5)\11)\7)\3 + )\4760)\0} c EXt%’YO(FQ, ]FQ);

+)\%5)\g)\7)\11 + )\31[)\%)\0)\14 + ()\%)\9 + )\9)\%))\13

Fidt Ao + 92231 + (A31 X311 A7 + A2s A5 g A5 ) A2
(11) Ty =
+(A3A 11+ AsdoAs) A1) A7

€ ExtS?(Fy, Fy);

(12) g 7r = A7 A3 Ao A1 A 15 4 c2(Ar A1z 4+ AigAo) A1 + D1(0)
8,77 Ao + )\%5()\27)\0)\7 + A1 A 191 + A1 A23Ao) A7

€ ExtS " (Fy, Fo);

H1(0)A1a + A35A3 A3 + (M5 11 1500
+)\%5)\13)\7 + A31 A7 A23 A + D3(0) A4
+)\15)\47)\(2))\3 + )\47)\3)% + )\47)\3)\2)\10
+A31A23 AT A9 + Az A1 A3 A9 + Az1 Aoz A1 A2

(13) me,52 = ¢ +A31A23A5A3 + Aar A1 A3 A5 + Aar Az Az A5 A3) A1q
F(Aa7A3A 1006 + Mz A7 A1 A8 A6 + AarAg A7 Ag
FA7 AT A5 A6 + A31A23A1 A9 A5 + Az1 A23 g A1 A5
+A15 A7 A0 A3 + A15 A7 AaAoAs + A5 a7 AT A5
+)\%5)\11)\21)\7))\7

€ ExtG®*(Fy, Fy);
(14) t; = Sq°t € Ext%®(Fa, Fy);

| dadisa + [daAie + A31(A7A23As 6,90 )
(15) 6,90 = { +A23A1500) A 15 + D3(0) Aaz] A1 € Ext,{7(Fs, Fa);

(16) C1 = Sq°C € ExtG ' ?(Fy, Fy);



8 On behavior of the sixth Lannes-Zarati homomorphism

[A31(A23 A 15 19013 + Az1 AgA11\g)

_ ) Fes(AsAin + AoA7)] A7 + fadis A 6,114 ,
(17) w6114 = Fes(AsAods + AsAeds + AisA2) € Exty; " (Fa, Fa);
+A3 M 0 A3 A5

(18) G1 = S¢°G € Ext§™"(Fy, Fy).

In [11], Hung-Peterson proved that (2 vamshes on decomposable elements
for s > 2. Therefore, it 1s sufficient to prove that <p6 is vanishing on indecom-
posable elements of Ext *(F2,F53). In order to show this claim, we prove that
images of cycles which represented indecomposable elements of Exti’t(IFg, Fsy)
under the homomorphism @JgQ : A¢ ® Fy — (RgF2)# are trivial. For conve-
nience, we write Ext%’ = Ext"(Fy, Fy).

Since the canonical projection 7w : Ay — R is an A-algebra homomorphism.
If A; contains a factor of negative excess, then ¢52(\;) = 0. Moreover, the
actions of S¢° on Ext%" and on R Fy commute with each other through (2.

In the Lambda algebra, we have (see Wang [20], Lin-Mahowald [17], and
Chen [3])

o @) = 0 with e = {(S¢°) (Aha)} € Ext i > 0.

In fact, for co = A3)2, we have 5% (co) = 0 since e(co) = —2 < 0. This
1mphes ©5%(co) = 0. Then,

p3° (i) = ©52((59°)"(co)) = (S4°)' (52 (o)) = 0.

o ©i2(d;) = 0 with d; = {(S¢°) ()\2)\2>\6+)\2)\ +A3AsAahe)} € Exty'™ 2>
0. By direct inspection, we have <p4 2(dp) =0, so

032 (di) = 032 ((Sq°) (do)) = (Sq°)' (¢} (do)) =
o ©i2(e;) =0 with
e: = {(S2°) (N3 A+ (A3 AZHA2A) A+ (A2 Ao+ Ao A2) Ao) } € Ext L2223 > 0.,

Since 352 (A3Xg) = 0, 252 (A3A2\4) = 0, 52(A2A7 A1) = 0 and @2 (A2 Ao Aa) =
0, we have
$3%(e0) = Py (AoAshada).

Applying the Adem relation, we have AgA3 = A7 A5. Then
@i (e0) = 252 (MadsAzha) = P12 (M AsAsh2) =

Hence, ¢y*(eg) = 0 and then ¢y (e;) = ¢3*((5¢°)*(¢o)) = (S4°)' (¢3* (o))
0.
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e ©i*(fi) = 0 with
Fi = £(Sq°) (A2X0h + (A2X0 + ArAsAs)As + A2A2)} € Exti?2% i > 0.
By direct inspection, we have
P’ (AFAoha) = 0,81° (MAoAs) = 0, 1> (ArAsA3) = 0, and @1* (A3A3) = 0,
then ¢2(fo) =0, and so
01 (fi) = ¢42((54°) (fo)) = (S¢°) (3 (fo)) = 0.
Similarly, by direct inspection, we also have

° (leIQ (91‘+1) = 0 with Ji+1 = {(Sqo)l()\%)\o)\ﬁ + ()\%)\9 + )\7)\5)\3))\5
—|—()\3)\9)\5 + )\%)\11))\3)} S EXti’QALQi, i > 0.

o ©2(Ds(i)) = 0 with Dy(i) = {(Sq°)i(As1Adrhasho)} € Ext’%52 i > 0.
Applying the Adem relation, we have
@12 (D3(0)) = 3% (A31A7A23M0) = B3> (A15A23A23A0) = 0.
Then
012 (Ds(i)) = ©32((S¢°) (D3(0))) = (S¢°) (#32(Ds(0))) = 0.
It is easy to check these details,
o 05 (n:) = 0 with n; = {(S¢")" (A AsAsho + Az A5 A3 Ao ds + A7 A1 A1 A5 A3) }
€ Ext’®%? i > 0.
o 02(D1(i)) = 0 with Dy (i) = {(Sq°) (A2sAiArda)} € Ext’? 72 i > 0.
o @52 (Hi(i)) = 0 with H1(i) = {(Sq°)' (M5 A1z hua + Afs A Ao
FAsA31A7 A As + AsAsi AsAr g + AisAsiAdzAsha)} € Ext%072 i > 0.

Using Adem relations, we have
A2zAt = A1 Az + Az A 4 Azder;
A2zAs = AisA12 + A1 e + AdgAis;
A7A11 = Ag1de7 + A23Ass;
A31A3 = A1sA19 + A7 der;

~ e~~~
W N
NN AN/
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A31de = AagA17 + Argdor; (57)
Az1A11 = A2z Aig; (67)
A31A7 = A1sAas3; (7")
A7A3 = A1sA35 + At a3 (87)
ArA7 = A15A30; 97)
X270 = A13A14 + A1 A6 + As Aoz + Azdag 4 A Aog; (10")
A2zdo = A1 A2 + AgAia 4+ ArAie + Az Ao + A1 dag; (117)
AitAdr = A3, (127)

Now, we prove that @JgQ sends the above eighteen indecomposable elements
(from (1) to (18)) to zero.

By replacing (11°) in (1), combined with results 52 (eg) = 0, 5% (fo) = 0,
we have @g2 () = 0. Then @5 (r) = 0.

By direct inspection and ¢32(g1) = 0, we imply ¢g*(q) = 0. Then
Fa
@6°(q) =0.

From result 52 (ng) = 0 and the excess of other terms is negative. There-
fore, pg2(t) = 0, then @g*(t) = 0.

By replacing (17) and (2’) in (4), then excess of all terms of y is negative.
Therefore, $¢2(y) = 0, imply g2 (¢) = 0.

From the result, ©52(e;) = 0 and by direct inspection, under @2, the
image of element C' is trivial.

From the result, ¢£?(D;(0)) = 0 and by direct inspection, under ¢g?, the
image of element G is trivial.

From (3’) and (10’), we have
P62 (D2) = $¢> Mz A11Ad) = @6° (A31 X217 A8 4 Aoz AasAd)
= @Jgg (A31(M3A1a + AM1Ai6 + As Aoz + AsAog
+ A1 A26) A8 + A2z AzsAd)
=0.
Then g2 (Ds) = 0.

From results ¢:*(D1(0)) = 0 and ¢;2(do) = 0, we have @g2(A) = 0.
Therefore, g (A) = 0.
(

Using (47), (57), (6”), (7’) and the results
52(c2) = 0,952 (fo) = 0, ¢5*(D1(0)) =0,

we have @52 (A') = 0. Then, gi?(A’) = 0.
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Similarly, taking (8"), (97),(12") and D;(0) replace on A", we have

A" = {D1(0)A12 + A A A2 + Aareo o}

= { AT 1A 7 A 12 + AT A AZ + Aar( A3 s + (A3A2 + A3\

+ ()\%)\9 + )\9)\%))\2))\0}

= { AT 1A A A2 + AT A AT A + Aar (A3 s + (AsAZ + A3A7)As

+ (A3 11 A1 + A7 A5A3)A2) Ao }

= { AT 1A 7 0 2 + AT A AZ + (A5 Ass + At Aaz) A3 s

+ (A15A35 + ArAa3) A2 + (A1sA35 + ArAaz) As A7) Ay

+ (A15A35 + A7 Au3) A1 A1 4+ A5 Az9A5A3) A2) Ao }
Obviously, the excess of all terms of A” is negative. Therefore, Gg2(A”) =
0, then @g2(A”) = 0.
Since ¢}? (f1) = 0,95 (ga) = 0 and the excess of the other terms of | is
negative. Therefore, G¢2(r1) = 0, then @g2(ry) = 0.
Depend on the results 5% (c2) = 0, 5*(D1(0)) = 0 and (8’). Tt is easy to
prove that under @JgQ, image of x¢ 77 is trivial, then <p]g2 (x6,77) = 0.
Since @=2(H,(0)) = 0, ¢52(D3(0)) = 0 and relations (37),(8’) and (97), we
have (,062 (x6,82) =0.

The actions of S¢" on ExtSA’t and on R Fy commute with each other
through ¢2. Therefore,

06’ (1) = 0° (9¢°t) = Sq°(@g* (t)) = 0.
From results ¢}?(D3(0)) = 0 and ¢}2(d2) = 0, we have @g2(z6.90) = 0.
Therefore, <p]g2 (x6,90) = 0.
Similarly, ¢5*(C1) = ¢*(5¢°C) = S¢°(95*(C)) = 0.

From results <,0]§2(03) = 0 and (pEQ (f2) = 0, we have @gg (336,114) = 0.
Therefore, g2 (6.114) = 0.

Similarly, <p]g2 (Gh) = <,0]g2 (S¢°G) = Sq° (¢I§2 (G)) =0.

The proof is complete. U
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