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Abstract

In this paper, we apply a version of Kakutani’s fixed point theorem to
study weak and Pareto quasi-equilibrium problems. Some sufficient con-
ditions on the existence of solutions of weak and Pareto quasi-equilibrium
problems with multivalued mappings are shown. As applications, we give
several results on the existence of solutions to vector quasivariational in-
equalities problems and vector Pareto quasi-saddle problems.

1 Introduction

Let D be a nonempty subset in a real topological vector space X and f :
D x D — R be a function such that f(x,x) = 0, for all z € D. The problem of
finding

Z € D, such that f(z,z) >0, forall x € D,

is call a scalar equilibrium problem. This problem generalizes many well-known
problems in the optimization theory such as variational inequalities, fixed point
problems, complementarity problems, saddle point problems, minimax prob-
lems (see [2], [5], [8], [10], [13]).
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Now, let X,Y and Z be Hausdorff locally convex topological vector spaces,
let D C X, K C Z be nonempty subsets and let C C Y be a cone. We denote
I(C)=Cn(=C). IfI(C) = {0}, C is said to be pointed. In this paper, we
assume that C is a convex closed pointed cone in Y. Given the following
multivalued mappings

S:Dx K — 2P,

T:Dx K — 2K,
F:KxDxD— 2",
we consider the following quasi-equilibrium problems:
(PQEP), Pareto quasi-equilibrium problem: Find (Z,7) € D x K such that
z € S,y),
y € T(z,y),
F(y,z,z) € —C\{0}, for all z € S(z, ).
(WQEP), Weak quasi-equilibrium problem: Find (Z,7) € D x K such that
z e S,y),
y € T(z,y),
F(g,z,x) € -int(C), for all z € S(z, 7).
The above problems are natural generalizations of the above scalar equilib-
rium problem (see [3], [7], [12]). The purpose of this paper is to prove some

new results on the existence of solutions to weak and Pareto quasi-equilibrium
problems.

2 Preliminaries

Throughout this paper, X, Y and Z we denote real Hausdorff locally convex
topological vector spaces. The space of real numbers is denoted by R. Given a
subset D C X, we consider a multivalued mapping F : D — 2Y. The definition
domain and the graph of F' are denoted by

domF ={x e D: F(z) # 0},

Gr(F)={(z,y) e DxY :y € F(z)},

respectively. We recall that F' is said to be a closed mapping if the graph
Gr(F) of F is a closed subset in the product space X x Y and it is said to be a
compact mapping if the closure F(D) of its range F(D) is a compact set in Y.
A multivalued mapping F : D — 2V is said to be upper(lower) semicontinuous
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in € D if for each open set V containing F'(z) (respectively, F(z) NV # ()
there exists an open set U of Z such that F(z) C V (respectively, F(x)NV # ()
for all x € U.

Now, let Y be a Hausdorff locally convex topological vector space with a cone
C. Firstly, we recall the following definitions which will be used in the main
results.

Definition 2.1. Let F': D — 2¥ be a multivalued mapping.
(i) F is said to be upper (lower) C—continuous in & € dom F if for any
neighborhood V' of the origin in Y there is a neighborhood U of Z such that:

Fz)CF@)+V+C

(F(z) C F(z) 4+ V — C, respectively)

holds for all x € U NdomF'.

(ii) If F' is upper C—continuous and lower C—continuous in Z simultaneously,
we say that it is C—continuous in Z.

(iii) If F' is upper, lower,..., C—continuous in any point of domF, we say
that it is upper, lower,. .., C—continuous on D.

(iv) In the case C = {0}, a trivial one in Y, we shall only say that F'
is upper, lower continuous instead of upper, lower 0-continuous. And, F' is
continuous if it is upper and lower continuous simultaneously.

Definition 2.2. Let F be a multivalued mapping from D to 2. We say that:
(i) F is upper (lower) C-convex on D if for any z1, 2 € D, t € [0,1], we
have:
tF(z1) + (1 —t)F(z2) C F(try + (1 —t)x2) + C

(respectively, F(txy + (1 — t)ze) CtF (1) + (1 —t)F(z2) — C).

(ii) F is upper (lower) C-quasiconvex-like on D if for any z, 2 € D, « €
[0, 1], either
F(z1) C Flaz1+ (1 —a)zs) + C

or,
F(z2) C Flaz1 4+ (1 — a)z) + C
(respectively, either F(ax1 + (1 — a)xe) C F(x1) — C
or,
F(azs + (1 — a)xs) € F(x2) — C)
holds.

In [6], Ferro has some examples to show that there is a upper (lower) C-
convex multivalued mapping which is not upper (lower) C-quasiconvex-like
and conversely, there is also a upper (lower) C-quasiconvex-like multivalued
mapping which is not upper (lower) C-convex.
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Definition 2.3. Let F be a multivalued mapping from D to 2¥. We say that:

(i) F is upper (lower) C-hemicontinuous if for any z,y € D, the follow-
ing implication holds: F(az + (1 — a)y) N C # (,for all a € (0,1) implies
that F(y) N C(y) # O (respectivelly, F(az + (1 — a)y) € —intC ,for all a €
(0,1) implies that F(y) € —intC(y)).

(ii) A multivalued mapping F : D — 2Y is said to be upper (lower) hemi-
continuous if for any x,y € D, the multivalued mapping f : [0, 1] — 2¥ defined
by f(a) = F(az + (1 — «)y) is upper (respectively, lower) semicontinuous.

Proposition 2.4. (See [5]) Assume that F : D — 2Y is a upper hemicontinu-
ous with nonempty compact values. Then F' is upper C-hemicontinuous.

Definition 2.5. Let F : D x D — 2Y be a multivalued mapping. We say
that:
(i) F is C- pseudomonotone if for any x,y € D

F(y,z) € —int(C) = F(x,y) C —C.
(ii) F is C- strong pseudomonotone if for any x,y € D
Fly,z) £ =C\{0} = F(z,y) € —C.

Remark 2.6. If Y = R,C = R, and F is a single-valued mapping then
the strongly C- pseudomonotonicity and C- pseudomonotonicity of F' become
definition for pseudomonotonicity of F' in [11].

Example 2.7. Let D = R, Y = R% C = {(t1;t2) : t1 > 0,t2 € R} and
F(z,y) = {(x —y;0)}. Then F is C- pseudomonotone and C- strong pseu-
domonotone.

Definition 2.8. Let ' : D — 2P be a multivalued mapping. We say that I
is a KKM mapping if for each {x1,z2,...,z,} C D, one has

co{x1, T2, ..., xn} C U F(x;).

i=1
The proofs of the following lemmas can be found in [5].

Lemma 2.9. Let ' : D x D — 2Y be a multivalued mapping with nonempty
values and F(xz,z) N C # 0 for any x € D. In addition, assume that

(i) For any fized x € D, F(.,x): D — 2 is upper C-hemicontinuous;

(ii) F is C-strong pseudomonotone;

(iii) For any fivzed v € D, F(x,.): D — 2V is lower C-convez ( or, lower
C'-quasiconvez-like).

Then, for any y € D, the following are equivalent.

1) F(y,x) £ —C\{0}, for all x € D;

2) F(z,y) C —C, forall x € D.
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Lemma 2.10. Let F: D x D — 2¥ be a multivalued mapping with nonempty
values and F(x,x) € —intC for any x € D. In addition, assume that

(i) For any fized x € D, F(.,x): D — 2V is lower C-hemicontinuous;

(ii) F is C- pseudomonotone;

(iii) For any fized x € D, F(x,.): D — 2 is lower C-convez.

Then, for any y € D, the followings are equivalent:

1) F(y,x) € —intC, for all z € D;

2) F(xz,y) C —C, forall x € D.

In the proof of the main results in Section 3, we need the following theorems.

Theorem 2.11. (See [4]) Assume that X is a topological vector space, D C X
is nonempty convex compact and F : D — 2P is a KKM mapping with closed
values. Then, we have

N F(x) # 0.

zeD

Theorem 2.12. (Kakutani fized point theorem, see [1]) Let D be a nonempty
convex compact subset and F : D — 2P be a multivalued mapping closed with
nonempty convexr values. Then there exists T € D such that T € F(T).

3 Main Results

Throughout this section, unless otherwise specify, by X, Y and Z we denote
Hausdorff locally convex topological vector spaces. Let D C X, K C Z be
nonempty subsets, C'is a convex closed pointed cone in Y . Given the following
multivalued mappings

S:Dx K — 2P,

T:Dx K — 2K,
F:KxDxD—2Y,
we prove that following theorem:

Theorem 3.1. Let D and K be nonempty convex compact subsets of Hausdorff
locally convex topological vector space X and Z, respectively. Assume that the
multivalued mapping F with nonempty values and F(y,z,x) N C # 0, for all
(z,y) € D x K. In addition, assume that:

(i) S is a continuous multivalued mapping with nonempty conver closed
values;

(ii) T is a upper semicontinuous multivalued mapping with nonempty convex
closed values;

(iii) For each y € K, F(y,.,.): D x D — 2Y is C-strong pseudomonotone;

(iv) For any fizred (x,y) € D x K, the multivalued mapping F(y,x,.): D —
2Y is lower C-convex (or, lower C-quasiconvez-like);
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(v) F is lower C-continuous and for any fized (y,z) € K x D, F(y,.,z) is
upper C-hemicontinuous.
Then there exists (Z,7) € D x K such that & € S(Z,y),y € T(Z,y) and

F(y,z,2) £ ~C\{0}, for all z € S(z,7).
Proof. We define the multivalued mapping M : D x K — 2P by
M(z,y) = {2’ € S(z,y) : F(y,2,2") C —C, for all z € S(z,y)}.

For each (z,y) € Dx K, we will show that M (z,y) is nonempty set. Indeed, for
each (z,y) € Dx K, we define the multivalued mapping Q. : S(z,y) — 25®¥)
by

er(z) = {x/ € S('xay) : F(ya Zax/) g _C}

Let {z],} be a net in Qy(2), z,, — «’. We have z/, € S(z,y) and F(y, z,z,,) C
—C. Since S(x,y) is a closed set, so 2’ € S(z,y). On the other hand, F is
lower C'-continuous, for any neighborhood V' of the origin in Y, there exists an
index ag such that

F(y,z,2") C F(y,z,2.,) — C+V, forall a> ap.

This implies that
F(y,z,2") C —-C+V.

Since C' is closed, we have
F(y,z,2") C —C.

Hence @’ € Quy(2z) and Qqy(2) is closed set.
Now we show that @Q,, is a KKM type mapping. If not, then there exists
{z1,22,...,2n} C S(x,y) such that

co{x1,xa, ..., xn} € U Quy(zi).
i=1

Hence there exists z* € co{z1,x2,...,zn} and * & Quy(x;), for i =1,2,...,n.
This implies
F(y,z;,2*) € —C, for i=1,2,...,n.

Since F(y,.,.) is C-strong pseudomonotone, we deduce that
F(y,z*,x;) C —-C\{0}, for i=1,2,....,n.
Since F(y,x,.) is lower C-convex (or, lower C-quasiconvex-like), we imply
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This contradicts with F(y,z,2z) N C # 0. Therefore @, is a K KM mapping.
By Theorem 2.11, we have N.cg(z,y)Qay(2) # 0. Hence, there exists =’ €
S(z,y) such that F(y, z,2') C —C, for all z € S(x,y). Thus, M(x,y) # 0.
We show that M (z,y) is convex set. Indeed, let z},z5, € M(x,y) and
t € [0,1], we have from the convexity of S(x,y), tz} + (1 —t)a € S(x,y) and

F(y,z 2) € =C,
F(y,z,25) € —C, for all z € S(x,y).
Since F(y,x,.) is lower C-convex (or, lower C-quasiconvex-like), we conclude
F(y,z,txy + (1 —t)zy) C —C, for all z € S(z,y).

This shows ta} 4+ (1 — t)z}, € M(z,y) and M (x,y) is a convex set.

Further, we claim that M is a closed multivalued mapping. Let x, —
T, Ya — Yy b, € M(Za,Ya),xh, — x’'. We show that 2’ € M(x,y). Indeed,
since z/, € S(xq,Yo) and the upper semicontinuity of S with closed values,
z' € S(x,y). For z/, € M(zq4,ya), we have

F(Ya, 2,2,) C —C, for all z € S(Za, Yo)-

For each z € S(x,y), by the lower semicontinuity of S, there exists z, €
S(Za,Ya) such that z, — 2. We have

Since F' is lower C-continuous, for any neighborhood V of the origin in Y, there
exists an index «g such that

F(y,z,2") C F (Yo 20, ¥) — C +V, forall a > ap.

This implies that
F(y,z,2") C —-C+V.

Since C' is closed, we have
F(y,z,2") C —C.

This means that 2’ € M (z,y) and M is a closed multivalued mapping.
Lastly, we define the multivalued mapping P : D x K — 2P*K Ly

P(xay) = M(xay) X T(:C,y)

We can easily verify that P is a closed multivalued mapping with nonempty
convex values. Moreover, since D x K is a compact set, we have that P
is also a upper semicontinuous multivalued mapping with nonempty convex
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closed values. Applying the fixed point theorem of Kakutani type, there exists
(z,y) € P(Z,y). This implies T € S(7,%),y € T(Z,y) and

F(g,z,z) C —C, for all = € S(z,%).

We use Lemma 2.9 with D replaced by S(Z, 7), we have & € S(Z,9),5 € T(Z, )
and
F(y,z,x) £ —C\{0}, for all = € S(z,7).

The proof of the corollary is complete. O
By using Lemma 2.10 and the proof is similar as the one of Theorem 3.1,
we obtain the following result.

Theorem 3.2. Let D and K be nonempty convex compact subsets of Hausdorff
locally convex topological vector space X and Z, respectively. Assume that the
multivalued mapping F with nonempty values and F(y, x,z) € —int(C), for all
(z,y) € D x K. In addition, assume that:

(i) S is a continuous multivalued mapping with nonempty conver closed
values;

(ii) T is a upper semicontinuous multivalued mapping with nonempty convex
closed values;

(iii) For any firedy € K, F(y,.,.): D x D — 2Y is C-pseudomonotone;

(iv) For any fized (z,y) € D x K, F(y,z,.): D — 2V is lower C-convex;

(v) F is lower C-continuous and for any fized (y,z) € K x D, F(y, ., z) is
lower C'-hemicontinuous.

Then there exists (Z,7) € D x K such that € S(Z,y),y € T(Z,7) and

F(y,z,x) £ —int(C), for all x € S(Z,7).

Remark 3.3. The assumption (v) in Theorem 3.1 and Theorem 3.2 can be
replaced by the following condition:
(v') The set {(z,y,2) € DxKxD : F(y,z,z) C —C}isclosed in Dx K x D.

4 System of quasi-equilibrium problems

Now, given D, K,C, S, T as above and G : KxDxD — 2¥ H: DxKxK —
2Y are multivalued mappings with nonempty values. We consider the following
problems:

(SPQEP), System of Pareto quasi-equilibrium problems: Find (Z, ) € D x
K such that

T € S(7,9),y€T(z,y)
and
G(y,z,z) £ —C\{0},for all z € S(z,7),
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H(z,y,y) £ —C\ {0}, forall y € T(z,7).
(SWQEP), System of weak quasi-equilibrium problems: Find (Z,3) € D x K
such that

and
G(g,z,x) € —int(C), for all z € S(Z,7),

H(z,y,y) € —int(C), for all y € T(Z, 7).

Theorem 4.1. Let D and K be nonempty convex compact subsets of Hausdorff
locally convex topological vector space X and Z, respectively. Assume that
the multivalued mappings G, H with nonempty values and G(y,x,x) N C #
0, H(z,y,y) NC # O for all (x,y) € D x K. The following conditions are
sufficient for (SPQEP) to have a solution:

(i) S, T are continuous multivalued mappings with nonempty convex closed
values;

(ii) G(y, .,.), H(x, .,.) are C-strong pseudomonotone, for any fized (x,y) €
D x K;

(iii) G(y,x,.): D — 2Y H(x,y,.) : K — 2Y are lower C-convex (or, lower
C'-quasiconvez), for every (x,y) € D x K fized;

(iv) Gly, ., ), H(x,.,y) are upper C-hemicontinuous, for any fized (x,y) €
D x K;

(v) G, H are lower C-continuous.

Proof. We define the multivalued mappings M; : D x K — 2P M, : D x K —
2K by
M (x,y) = {2’ € S(z,y) : G(y,z,2') C —C, forall ze S(z,y)}.
My(z,y) ={y' € T(x,y): H(z,t,y') € —C, forall teT(z,y)}.

Then we can early prove that M;, Ms are closed mappings with nonempty
convex values. Now, we define the multivalued mapping M : D x K — 2PxK
by

M(xa y) = Ml(xa y) X MQ(xa y)

Then M is closed mapping with nonempty convex. Applying theorem fixed
point Kakutani type, there exists (Z,7) € D x K such that (Z,3) € M(Z, 7).
This implies, Z € S(Z,7),y € T(Z,y) and

G(g,z,z) C —C,for all x € S(z,7),

H(z,y,y) C —C,for ally € T(,7).

Since G(y, ., .), H(z, .,.) are C-strong pseudomonotone, we have

G(y,z,z) £ —C\ {0}, for all z € S(z, ),
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H(z,5,y) € —C\ {0}, for all y € T(z, ).

The proof of the theorem is complete. O
By exploiting the similar arguments used in the proof of Theorem 4.1, we
obtain the following result.

Theorem 4.2. Assume that D and K are nonempty convex compact subsets of
Hausdorff locally convez topological vector space X and Z, respectively. Let F, G
be set-valued maps with nonempty values and G(y, z, x) € —int(C), H(z,y,y) <
—int(C) for all (x,y) € D x K. The following conditions are sufficient for
(SWQEP) to have a solution:

(i) S, T are continuous multivalued mappings with nonempty convex closed
values;

(ii) For any fized (x,y) € Dx K, G(y,.,.), H(z, .,.) are C-pseudomonotone;

(iii) For every (z,y) € D x K fized, the multivalued mappings G(y,x,.) :
D —2Y H(x,y,.): K —2Y are lower C-conver;

(iv) For any fized (x,y) € DxK, G(y, .,x), H(x, .,y) are lower C-hemicontinuous;

(v) G, H are lower C-continuous.

5 Applications to vector quasi-variational in-
equalities problems

In this section, we apply the obtained results in Section 3 to vector quasi-
variational inequalities problems with multivalued mappings. Let L(X,Y) be
the set of all continuous linear mappings from X into Y and f(x) denote the
value of f at x where f € L(X,Y), x € X. Let D C X, K C Z be nonempty
subsets, let ¢ : D — Y be a single valued mapping and S : D x K — 2P T :
Dx K — 2K G:D x K — 2LXY) be multivalued mappings. In addition,
assume that C' is a pointed convex closed cone in Y. We consider the following
problem:

Vector weak quasi-variational inequalities problem: Find (Z,7) € D x K such
that

z€S5(%,9),y€T(x,9)
and
G(Z,9)(x — ) + ¢p(x) — ¢(Z) € —int(C), for all x € S(z, 7).

Vector Pareto quasi-variational inequalities problem: Find (Z,§) € D x K such
that
z€S(z,y),y€T(,9)
and
Gz, 9)(z =)+ ¢(x) — o(z) £ —C\ {0}, for all w € S(,9).
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Definition 5.1. Let F': D — 2L5Y) be o multivalued mapping. We say that:
(i) F' is C—pseudomonotone with respect to ¢ if for any given x,z € D

F(z)(x = 2) + ¢(2) — ¢(x) £ —int(C) = F(2)(z —x) + ¢(z) — ¢(2) € —C.

(ii) F' is C—strong pseudomonotone with respect to ¢ if for any given z, z €
D

Fx)(z = 2) + ¢(2) = o(x) £ =C\{0} = F(2)(z — ) + ¢(x) — ¢(2) € -C.

Corollary 5.2. Let D, K,S,T be the same as in Theorem 3.1. In addition,
assume that:

(i) The mapping ¢ is lower C-convex;

(ii) For any fized y € K, the mapping G(.,y) : D — 2L(5Y) s C— strong
pseudomonotone with respect to ¢;

(iii) For any fized (y, z) € K x D, the mapping x — G(x,y)(z —z) +¢(2) —
o(x) is upper C-hemicontinuous;

(iv) The set {(z,y,2) € D x K x D : G(z,y)(z — z) + ¢(2) — ¢(x) C —C}
is closed in D x K x D.

Then the above vector Pareto quasi-variational inequalities problem has a
solution.

Proof. The proof of this corollary follows immidiately from Theorem 3.1 and
Remark 3.3 by taking F(y,z, 2) = G(x,y)(z — x) + ¢(2) — ¢(x). O

Corollary 5.3. Let D, K,S,T be the same as in Theorem 3.2. In addition,
assume that:

(i) The mapping ¢ is lower C-convex;

(ii) For any fized y € K, the mapping G(.,y) : D — 2EC5Y) 4s C—pseudomonotone
with respect to ¢;

(iii) For any fized (y, z) € K x D, the mapping x — G(x,y)(z —z) +¢(2) —
o(x) is lower C-hemicontinuous;

(iv) The set {(z,y,2) € D x K x D : G(z,y)(z — z) + ¢(2) — ¢(x) C —C}
is closed in D x K x D.

Then the above vector weak quasi-variational inequalities problem has a so-
lution.

Proof. The proof of this corollary follows immidiately from Theorem 3.2 and
Remark 3.3 by taking F(y,z, 2) = G(x,y)(z — x) + ¢(2) — ¢(x). O

6 Applications to vector Pareto quasi-saddle prob-
lems

Let D C X, K C Z be nonempty subsets, let f : D x K — Y be a single
valued mapping and S : D x K — 2P T : D x K — 2% be multivalued
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mappings. In addition, assume that C is a pointed convex closed cone in Y
satisfying : Y = C + (—C). We consider the following problem.
Vector Pareto quasi-saddle problem: Find (Z, ) € D x K such that

z€S(z,y),y€T(,9)

and
f(xag) ¢ f('iag) _C\ {O},fOI‘ all z € S('iag)a

f(@,9) & f(z,y) — C\ {0}, for all y € T(7, 7).

Using the results obtained in the previous section, we establish a existence
result for solutions of this problem.

Corollary 6.1. Let D, K,S,T be the same as in Theorem 4.1. In addition,
assume that:

(i) The mapping f is (—C)-continuous and C-continuous;

(ii) For any fized (z,y) € D x K, the mapping f(.,y) : D — Y is C-
concave (or, C-quasiconcave-like) and f(x,.) : K — Y is C- convez(or, C-
quasiconvez-like).

Then the above vector Pareto quasi-saddle problem has a solution.

Proof. We define the single valued mappings G : K x D x D — Y H :
Dx KxK—Y by

G(yaxaz) = f(z,y) - f(xay)aH(xayat) = f(xay) - f(xat)'

Then, the vector Pareto quasi-saddle problem becomes to find (Z,y) € D x K
such that
reS(z,y),yeT(z,79)
and
G(y,z,z) £ —C\ {0}, for all z € S(Z, ),

H(z,5,y) € —C\ {0}, for all y € T(z, 7).

First of all, we show that G(y, ., z) is upper C-hemicontinuous. Indeed, assume
that
G(y,az1 + (1 — @)z, z2) NC #£ 0, for all a € (0,1).

This implies
[f(z,y) — flaz1 + (1 — a)z2,y)]NC # 0, for all a € (0,1).

By f is (—C)-continuous, for an arbitrary neighborhood V' of the origin in Y,
we have
flazy + (1 — @)za,y) € f(x2,y) + V +C.
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This implies
[f(z,9) = flza,y) =V = CINC #0.
Hence, we have
[f(z,9) = f(z2,y) +VINC #0.
This gives
[f(z,9) = flz2,9)] N C #0.

Hence, G(y, ., z) is upper C-hemicontinuous. By the similar arguments used in
the above proof, we conclude that H(x,.,t) is upper C-hemicontinuous.

Now, we show that G(y, ., .) is strong C-pseudomonotone. Suppose G(y, z, z) €
—C\ {0} namely, f(z,y) — f(w.y) & —C'\ {0} and hence f(z,y) — f(2,y) ¢
C\ {0}. Since Y = C + (—C), we conclude that f(z,y) — f(z,y) € —C. There-
fore G(y,z,z) C —C. Hence G(y,.,.) is strong C-pseudomonotone. By the
similar arguments used in the above proof, we conclude that H(z,.,.) is strong
C-pseudomonotone.

Next, we show that for any fixed (z,y) € D x K, G(y,x,.) is lower C-
convex (or, lower C-quasiconvex-like). Let z1,22 € D and « € [0, 1], if f(.,¥)
is C-concave, then we have

Gy, z,az + (1 — a)z) = flaz + (1 — )z2,y) — f(z,y) € af(z,y) +
(1 —a)f(z2,y) — fz,y) — C = aG(y,x,z1) + (1 — a)G(y, z, z2) — C. Hence
G(y,x,.) is lower C-convex. If f(x,.) is C-quasiconcave-like, we also conclude
that G(y,z,.) is lower C-quasiconvex-like. By the similar arguments used in
the above proof, we conclude that H(x,y,.) is lower C-convex( or, lower C-
quasiconvex-like).

We claim that G is lower C-continuous. Indeed, let (yo, xo, 20) € K x D x D.
Since f is (—C')-continuous and C-continuous, for an arbitrary neighborhood
V of the origin in Y there exists neighborhoods U,,, Uy, , U, of g, Yo, 20, such
that

f(z0,y0) € f(z,y) +V = C, for all (z,y) € (U,,,Uy,)-

f(zo,90) € f(z,y) +V +C, for all (z,9) € (Us,,Uy,)-
Then, we have
f(z0,90) = f(z0,90) € f(z,y)—f(z,y)+V =C, for all (z,y,z) € (Usy, Uy, Us,).
This mean that
G(yo, 0, 20) C G(y,x,2) +V = C, for all (z,y,2) € (Usy, Uyo, Usy)-

Hence, G is lower C-continuous. By the similar arguments used in the above
proof, we conclude that H is lower C-continuous.
Applying Theorem 4.1, there exists (Z,7) € D x K such that

z€8(z,y),y€T(2,9)
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and
G(y,z,z) £ —C\ {0}, for all z € S(z,7),

H(z,y,y) £ —C\ {0}, forall y € T(z, p).
This mean that z € S(Z,9),y € T(z,7) and
y)

flz,9) & f(z,9) — C\ {0}, for all x € S(z,7),

f(z.9) & f(z,y) — C\ {0}, forally € T(z,9).

The proof of the theorem is complete. [0 When Y =R, C' = R, we have the
following corollary.

Corollary 6.2. Let D, K,S, T be the same as in Corollary 4.1. In addition,
assume that:

(i) The mapping f: D x K — R is continuous;

(ii) For any fized (x,y) € D x K, the mapping f(.,y) : D — R is concave
(or, quasiconcave) and f(x,.): K — R is convex(or, quasiconver).

Then there exists (Z,7) € D x K such that

z€S(z,y),y€T(2,9)

and
max  min r,y) = min max z,Y).
rGS(fE,Q)yGT(fE,Q)f( y> yeT(rz,g)meS(rz,g)f( y)
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