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Abstract

In this paper we study Armendariz property for ∗-rings. We introduce
the class of ∗-Armendariz ∗-rings, which contains reduced ∗-rings, and
its properties are studied. We prove that each ∗-Armendariz ∗-ring is ∗-
Abelian. Moreover, we show that the property of a ∗-Armendariz ∗-ring
R is extended to its polynomial ∗-ring R[x], localization S−1R of R to S,
Laurent polynomial ∗-ring R[x, x−1] and from Ore ∗-ring to its classical
Quotient Q. Furthermore, we prove that for a ∗-Armendariz ∗-ring R;
R is ∗-Baer if and only if R[x] (resp., R[[x]]) is also ∗-Baer. Finally, we
show that the property of ∗-ring having quasi-∗-IFP R can be extendeded
to its localization of R to S, Laurent polynomial ∗-ring and polynomial
∗-ring.

1 Introduction

By a ring we always mean an associative ring with identity. A ring R is said
to be ∗-ring if on R there is defined an involution ∗. ∗-rings are objects of the
category of rings with involution with morphisms also preserving involution.
Therefore the consistent way of investigating ∗-rings is to study them within
this category, as done in a series of papers (for instance [4], [3] and [1]). The
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172 ∗-Armendariz property for involution rings

purpose of this note is to study ∗-Armendariz ∗-rings within its category. The
right annihilator of the nonempty set A of R is denoted by rR(A) and the ∗-
right annihilator of A is denoted by r∗R(A) = {x ∈ R | Ax = Ax∗ = 0}. If there
is no ambiguity, we write r(A) and r∗(A) for rR(A) and r∗R(A), respectively.
A self adjoint idempotent element e (that is e∗ = e = e2) is called projection.
A ∗-ring R is said to be Abelian (∗-Abelian) if every idempotent (projection)
of R is central. We denote the set of all projections of R by B∗(R). Recall
from [4], a nonzero element a of a ∗-ring R is a ∗-zero divisor if ab = 0 = a∗b
for some nonzero element b ∈ R. Obviously, a ∗-zero divisor element is zero
divisor, but the converse is not true [4, Example 3]. A ∗-ring R is said to have
IFP (quasi-∗-IFP) if for all a, b ∈ R, ab = 0 (ab = 0 = ab∗) implies aRb = 0
([11], [1]). R is reversible if ab = 0 implies ba = 0 ([7]).

The study of Armendariz rings which is related to polynomial rings, was
initiated by Armendariz [5] and Rege and Chhawchharia [14]. A ring R is called
Armendariz if whenever polynomials f(x) = a0 + a1x + . . . + amxm, g(x) =
b0 + b1x + . . . + bnxn ∈ R[x] satisfy f(x)g(x) = 0, then aibj = 0 for each i, j.
(The converse is obviously true). Recall from [3], an element a of R is said to be
∗-nilpotent if (aa∗)n = 0 and am = 0 for some positive integers n and m. A ∗-
ring R is called reduced (∗-reduced) if it has no nonzero nilpotent (∗-nilpotent)
elements. Reduced rings are Armendariz by [6, Lemma1]. Following [8], a
∗-ring R is said to be Baer ∗-ring if the right annihilator of every nonempty
subset of R is generated, as a right ideal, by a projection. In [3], a generalization
of Baer ∗-ring is given which is consistent with the category of involution rings
that is ∗-Baer ∗-ring. A ∗-ring R is said to be a ∗-Baer ∗-ring if the ∗-right
annihilator of every nonempty subset A of R is a principal ∗-biideal generated
by a projection: that is r∗(A) = eRe.
An involution ∗ is called proper (resp., semiproper) if aa∗ = 0 (resp., aRa∗ =
0) implies a = 0, for every element a ∈ R. A proper involution is clearly
semiproper. Moreover, several examples are included which answers questions
that occur naturally in the process of this paper.

Throughout this paper, the integers modulo n will be denoted by Zn, the
field will be denoted by F and Mn(R) will denote the full matrix ring of all n×n
matrices over the ring R, while Tn(R) (TnE(R)) will denote the n × n upper
triangular matrix ring (with equal diagonal elements) over R. Furthermore,
for a commutative ring R, the involution � defined on TnE(R) for n > 2 is
given by replacing each entry by its involutive image and fixing the two diag-
onals considering the diagonal right upper / left lower as symmetric ones and
interchanging the symmetric elements about it. For n = 2 (trivial extension
T(R, R), the involution � is the adjoint involution.
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2 ∗-Armendariz ∗-Rings

In this section, we introduce Armendariz property for ∗-rings. If R is a ∗-ring,
then the involution ∗ can naturally be extended to R[x] as:

(f(x))∗ = (
∑m

i=0 aix
i)∗ =

∑m
i=0 a∗

i x
i for all f(x) ∈ R[x].

Definition. A ∗-ring R is called ∗-Armendariz if whenever the polynomials
f(x) = a0 + a1x + . . . + amxm and g(x) = b0 + b1x + . . . + bnxn ∈ R[x] satisfy
f(x)g(x) = f(x)g∗(x) = 0, then aibj = 0 for all i, j (consequently aib

∗
j = 0).

Since each Armendariz ∗-ring is clearly ∗-Armendariz and each reduced ring
is Armendariz [6, Lemma 1], then we have the following.

Proposition 1. Each reduced ∗-ring is ∗-Armendariz.

The converse of the previous proposition is not true as shown by the fol-
lowing example:

Example 1. Consider the ∗-ring R =
(

0 F

0 0

)
, with adjoint involution ∗

defined by:
(

a b
0 c

)∗
=

(
c −b
0 a

)
. R is Armendariz [10, Example 14]

and so ∗-Armendariz. Moreover, R is not reduced since the nonzero matrix

A =
(

0 1
0 0

)
satisfies A2 = 0.

Example 2. Consider the ∗-ring R =
(

Z4 Z4

0 Z4

)
, with the adjoint involu-

tion ∗. R is not ∗-Armendariz. Indeed, the polynomials f(x) =
(

2 2
0 0

)
+(

0 1
0 0

)
x, g(x) =

(
2 0
0 2

)
+

(
0 1
0 0

)
x, satisfy f(x)g(x) = f(x)g∗(x) =

0, while
(

2 2
0 0

) (
0 1
0 0

)
=

(
0 2
0 0

)
�= 0.

For the polynomial f ∈ R[x] of degree m with f =
∑m

i=0 aix
i, let Sf =

{a0, a1, · · · , am}.
Corollary 1. Let R be a reduced ∗-ring and U ⊆ R[x]. If T = Uf∈U Sf then
r∗R[x](U) = r∗(T )[x].

Proof. Let g =
∑n

j=0 bjx
j ∈ R[x] and Ug = Ug∗ = 0, then fg = fg∗ = 0 for

all f ∈ U if and only if aibj = aib
∗
j = 0 for all ai ∈ Sf , bj ∈ R, 0 ≤ j ≤ n, by

Proposition 1, which imply

Sf bj = Sf b∗j = 0
USf bj = USf b∗j = 0

Tbj = Tb∗j = 0.
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Hence bj ∈ r∗(T ). The opposite inclusion is clear. �
The question when a ∗-Armendariz ∗-ring is Armendariz has a partial an-

swer in Proposition 2, where we need the following Lemma, which can be easily
proved.

Lemma 1. Let R be a reduced ∗-ring and f, g ∈ R[x] with f(x) =
∑m

i=0 aix
i

and g(x) =
∑n

j=0 bjx
j . Then f(gg∗) = f(gg∗)∗ = 0 if and only if aibjb

∗
k−(i+j) =

0 for all 0 ≤ i, j ≥ k, j ≤ k ≤ m + n.

Proposition 2. Let R be a ∗-Armendariz ∗-ring with proper involution, then
R is Armendariz.

Proof. Let f(x)g(x) = 0 for some f(x), g(x) ∈ R[x]. Then 0 = f(gg∗) =
f(gg∗)∗ implies aick = 0, since R ∗-Armendariz and ck =

∑k
j=0 bjb

∗
k−j. Hence∑k

i=0

∑k
j=0 ai(bjb

∗
k−(i+j)) = 0 and consequently aibjb

∗
k−(i+j) = 0.

Now (aibj)(aibj)∗ = aibjb
∗
ja

∗
i = 0. Since ∗ is proper then aibj = 0, which

means that R is Armendariz. �
One can easily show that the class of ∗-Armendariz ∗-rings is closed under

direct sums (with changeless involution) and under taking ∗-subrings.

Proposition 3. The class of ∗-Armendariz ∗-rings is closed under direct sums
and under taking ∗-subrings.

Using direct proof, we can find ∗-subrings of T3E(R), which are ∗-Armendariz
as follows.

Proposition 4. Let R be a commutative reduced ∗-ring, then the �-ring T3E(R),
with adjoint involution � is �-Armendariz.

Corollary 2. Let R be a commutative reduced ∗-ring, then the �-ring T(R, R),
with adjoint involution � is �-Armendariz.

The reduced condition in Proposition 4 and Corollary 2 is essential accord-
ing to the following examples:

Example 3. Z4 is not reduced ∗-ring and the �-ring T3E(Z4) is not �-Armendariz.

Indeed, the polynomial f(x) =

⎛
⎝ 2 0 1

0 2 0
0 0 2

⎞
⎠+

⎛
⎝ 2 0 0

0 2 0
0 0 2

⎞
⎠x, satisfies (f(x))2 =

f(x)f�(x) = 0, while

⎛
⎝ 2 0 1

0 2 0
0 0 2

⎞
⎠

⎛
⎝ 2 0 0

0 2 0
0 0 2

⎞
⎠ =

⎛
⎝ 0 0 2

0 0 0
0 0 0

⎞
⎠ �= 0.

Example 4. Again Z8 is not reduced ∗-ring and the �-ring T(Z8, Z8) is not �-
Armendariz. Indeed, the polynomial f(x) =

(
4 0
0 4

)
+

(
4 1
0 4

)
x, satisfies

(f(x))2 = f(x)f�(x) = 0, while
(

4 0
0 4

) (
4 1
0 4

)
=

(
0 4
0 0

)
�= 0.



U. A. Aburawash and B. M. ELgamudi 175

Based on Proposition 4, one may suspect that TnE(R) is also �-Armendariz
for all n ≥ 4. But the following example discards this possibility.

Example 5. Consider T4E(R) over a commutative reduced ∗-ring R and let

f(x) =

⎛
⎜⎜⎝

0 1 0 0
0 0 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎟⎠ +

⎛
⎜⎜⎝

0 1 −1 0
0 0 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎟⎠ x, g(x) =

⎛
⎜⎜⎝

0 0 0 0
0 0 0 0
0 0 0 1
0 0 0 0

⎞
⎟⎟⎠ +

⎛
⎜⎜⎝

0 0 0 0
0 0 0 1
0 0 0 1
0 0 0 0

⎞
⎟⎟⎠x, be polynomials in T4E(R)[x]. Then f(x)g(x) = f(x)g�(x) =

0, but

⎛
⎜⎜⎝

0 1 0 0
0 0 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎟⎠

⎛
⎜⎜⎝

0 0 0 0
0 0 0 1
0 0 0 1
0 0 0 0

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

0 0 0 1
0 0 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎟⎠ �= 0. So T4E(R)

is not �-Armendariz. Similarly, for all n ≥ 5.

The full matrix Mn(R) over a ∗-ring R with transpose involution is not
∗-Armendariz, for n ≥ 3, according to the following examples:

Example 6. The ∗-ring M3(R) is not ∗-Armendariz. Indeed, the polynomials

f(x) =

⎛
⎝ 0 1 0

0 0 0
0 0 0

⎞
⎠+

⎛
⎝ −1 0 0

0 0 0
0 0 0

⎞
⎠x, g(x) =

⎛
⎝ 0 0 1

0 0 0
0 0 1

⎞
⎠+

⎛
⎝ 0 0 0

0 0 1
0 0 0

⎞
⎠x,

satisfy f(x)g(x) = f(x)g∗(x) = 0, while⎛
⎝ 0 1 0

0 0 0
0 0 0

⎞
⎠

⎛
⎝ 0 0 0

0 0 1
0 0 0

⎞
⎠ =

⎛
⎝ 0 0 1

0 0 0
0 0 0

⎞
⎠ �= 0.

Example 7. The ∗-ring M4(R) is not ∗-Armendariz. Indeed, the polynomials

f(x) =

⎛
⎜⎜⎝

0 1 0 0
0 0 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎟⎠ +

⎛
⎜⎜⎝

0 1 −1 0
0 0 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎟⎠ x, g(x) =

⎛
⎜⎜⎝

0 0 0 0
0 0 0 0
0 0 0 1
0 0 0 0

⎞
⎟⎟⎠ +

⎛
⎜⎜⎝

0 0 0 0
0 0 0 1
0 0 0 1
0 0 0 0

⎞
⎟⎟⎠x, satisfy f(x)g(x) = f(x)g∗(x) = 0, while

⎛
⎜⎜⎝

0 1 0 0
0 0 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎟⎠

⎛
⎜⎜⎝

0 0 0 0
0 0 0 1
0 0 0 1
0 0 0 0

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

0 0 0 1
0 0 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎟⎠ �= 0.

Using the terminology of Corollary 2, the next example declare that the
trivial extension of the trivial extension T(R, R) (that is; T(T(R, R), T(R, R)))
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of a commutative reduced ∗-ring is not �-Armendariz.

Example 8. Let R be a commutative reduced ∗-ring. Then the �-ring T(R, R)
is �-Armendariz by Corollary 2 and the �-ring

P =
{(

A B
0 A

)
: A, B ∈ T(R, R)

}
is not �-Armendariz. Indeed, the polyno-

mial f(x) =

⎛
⎜⎜⎜⎜⎝

(
0 1
0 0

) (
0 0
0 0

)

(
0 0
0 0

) (
0 1
0 0

)

⎞
⎟⎟⎟⎟⎠ +

⎛
⎜⎜⎜⎜⎝

(
0 1
0 0

) (
1 0
0 −1

)

(
0 0
0 0

) (
0 1
0 0

)

⎞
⎟⎟⎟⎟⎠x,

satisfy (f(x))2 = f(x)f�(x) = 0, while⎛
⎜⎜⎜⎜⎝

(
0 1
0 0

) (
0 0
0 0

)

(
0 0
0 0

) (
0 1
0 0

)

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

(
0 1
0 0

) (
1 0
0 −1

)

(
0 0
0 0

) (
0 1
0 0

)

⎞
⎟⎟⎟⎟⎠ �= 0.

Next, we prove the involutive version of results due to Lee and Zhou ([12]).

Proposition 5. Every ∗-Armendariz ∗-ring is ∗-Abelian.

Proof. Let (ax+b)(a1x+b1) = (ax+b)(a1x+b1)∗ = 0. If R is not ∗-Armendariz
then −ba1 = ab1 �= 0 and −ba1

∗ = ab1
∗ �= 0; equivalently br∗(a) ∩ ar∗(b) �= 0,

where r∗(a) (resp., r∗(b) ) is the a ∗-right annihilator of a (resp., b). Since
R is ∗-Armendariz, we have −ba1 = ab1 = 0 and −ba1

∗ = ab1
∗ = 0, hence

br∗(a) ∩ ar∗(b) = 0. Let e1, e2 ∈ R be projections and take b = e1 and a =
1 − e2. Noting that r∗(b) = (1 − e1)R(1 − e1) and r∗(a) = e2Re2, we get
e1e2Re2 ∩ (1 − e2)(1 − e1)R(1 − e1) = 0. Further, suppose that e2e1 = 0,
then e1e2e2 = e1e2 = (1 − e2)(1 − e1)(−e2)(1 − e1) ∈ e1e2Re2 ∩ (1 − e2)(1 −
e1)R(1−e1) = 0. Thus for any idempotent e ∈ R and any element r ∈ R, x1 =
e+er(1−e), x2 = e+(1−e)re are idempotents satisfy (1−e)x1 = 0, x2(1−e) = 0
and so x1(1 − e) = 0, (1− e)x2 = 0. Hence er(1 − e) = 0, re(1 − e) = 0 which
imply er = ere, re = ere. Thus R is Abelian and consequently ∗-Abelian. �

The converse of Proposition 5 is not true according to the following example:

Example 9. By Example 5, the �-ring T4E(Z2) is not �-Armendariz and the

only projections of it are

⎛
⎜⎜⎝

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎟⎠ and

⎛
⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎞
⎟⎟⎠ which are

central. Hence T4E(Z2) is �-Abelian.

A necessary and sufficient conditions for a ∗-ring R to be ∗-Armendariz is
now given.
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Proposition 6. For a ∗-ring R, the following statements are equivalent:
1. R is ∗-Armendariz.
2.eR and (1 − e)R are ∗-Armendariz for every projection e of R.

Proof. 1 ⇒ 2 is obvious by Proposition 3.
2 ⇒ 1. Let f(x)g(x) = f(x)g∗(x) = 0 with f(x) =

∑m
i=0 aix

i, g(x) =∑n
j=0 bjx

j

∈ R[x], then ef(x)g(x) = ef(x)eg(x) = ef(x)g∗(x) = ef(x)eg∗(x) = 0 and
(1− e)f(x)g(x) = (1− e)f(x)(1 − e)g(x) = (1− e)f(x)g∗(x) = (1− e)f(x)(1 −
e)g∗(x) = 0, since e is central. By assumption, we have eaibj = 0 and
(1−e)aibj = 0 for all 0 ≤ i ≤ m, 0 ≤ j ≤ n. Hence aibj = eaibj +(1−e)aibj = 0
and R is ∗-Armendariz. �

In the end of this section, we summarize our main results as follows:
Reduced ⇒ Armendariz ⇒ Abelian

⇓ ⇓
*−Armendariz ⇒ *−Abelian

3 Extensions of ∗-Armendariz ∗-rings

In this section, we generalize the property of ∗-Armendariz to some know ex-
tensions; namely the polynomial ∗-ring, the Laurent polynomial ∗-ring, the
localization of R to S and from Ore ∗-ring to its classical Quotient.
Theorem 1. A ∗-ring R is ∗-Armendariz if and only if R[x] is ∗-Armendariz.

Proof. Let R be a ∗-Armendariz ∗-ring and f(y)g(y) = f(y)g∗ (y) = 0 with
f(y) = f0 +f1y+ · · ·+fmym, g(y) = g0+g1y+ · · ·+gnyn ∈ R[x][y] with fi, gj ∈
R[x]. Let t = deg f0+ deg f1 + · · ·+ degfm+ deg g0+ deg g1 + · · ·+ deg gn

where the degree is as polynomials in x and the degree of the zero polynomials
is taken to be zero. Then f(xt) = f0 +f1x

t + · · ·+fmxtm, g(xt) = g0x
t +g1x

t +
· · ·+ gnxtn ∈ R[x] and the set of coefficients of the fi

,s (resp., gj
,s) equals the

set of coefficients of the f(xt) (resp., g(xt)). Since f(y)g(y) = f(y)g∗(y) = 0
and x commutes with elements of R, f(xt)g(xt) = f(xt)g∗(xt) = 0. Since R is
∗-Armendariz, each coefficients of fi annihilates each coefficients of gi. Thus
figj = 0. The sufficient condition is clear by Proposition 3. �

Let R be a ∗-ring and S be a multiplicatively closed subset of R consisting
of nonzero central regular elements, then the localization of R to S is the ∗-ring
S−1R = {u−1a| u ∈ S, a ∈ R}, with involution ∗ defined as:

(u−1a)∗ = u∗−1a∗.

Proposition 7. A ∗-ring R is ∗-Armendariz if and only if S−1R is ∗-Armendariz.

Proof. By Proposition 3, it suffices to prove the necessary condition.
Let R be a ∗-Armendariz ∗-ring and F (x)G(x) = F (x)G∗(x) = 0 with F (x) =∑m

i=0 αix
i, G(x) =

∑n
j=0 βjx

j ∈ S−1R[x], where αi = u−1ai, βj = v−1bj, and
ai, bj ∈ R, u, v ∈ S. Hence
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F (x)G(x) = (u−1a0 + u−1a1x + · · ·+ u−1amxm)(v−1b0

+v−1b1x + · · ·+ v−1bnxn)
= u−1v−1a0b0 + u−1v−1(a0b1 + a1b0)x + · · ·

+u−1v−1(a0bn + · · ·+ amb0)xm+n

= (vu)−1(a0b0 + (a0b1 + a1b0)x + · · ·
+(a0bn + · · ·+ amb0)xm+n)

= (vu)−1f(x)g(x) = 0,

F (x)G∗(x) = (u−1a0 + u−1a1x + · · ·+ u−1amxm)(v−1∗b∗0
+v−1∗b∗1x + · · ·+ v−1∗b∗nxn)

= u−1v∗−1a0b
∗
0 + u−1v∗−1(a0b

∗
1 + a1b

∗
0)x + · · ·

+u−1v∗−1(a0b
∗
n + · · ·+ amb∗0)xm+n

= (v∗u)−1(a0b
∗
0 + (a0b

∗
1 + a1b

∗
0)x + · · ·

+(a0b
∗
n + · · ·+ amb∗0)xm+n)

= (v∗u)−1
f(x)g∗(x) = 0.

since S is contained in the center of R, so f(x)g(x) = f(x)g∗(x) = 0. By
hypothesis aibj = 0 which implies αiβj = (vu)−1aibj = 0. Therefore S−1R is
∗-Armendariz. �

From Proposition 7, the following results are straightforward.
Corollary 3. If R is an Armendariz ∗-ring, then S−1R is ∗-Armendariz.
Corollary 4. If S−1R is an Armendariz ∗-ring, then R is ∗-Armendariz.

The ∗-ring of Laurent polynomials in x, with coefficients in a ∗-ring R,
consists of all formal sum f(x) =

∑m
i=k aix

i with obvious addition and mul-
tiplication, where ai ∈ R and k, m are (possibly negative) integers and with
involution ∗ defined as f∗(x) =

∑m
i=k a∗

i x
i. We denote this ring as usual by

R[x, x−1].
Corollary 5. For a ∗-ring R, R[x] ∗-Armendariz if and only if R[x, x−1] ∗-
Armendariz.

Proof. The sufficient condition is obvious by Proposition 3. Clearly S =
{1, x, x2, · · · } is a multiplicatively closed subset of R[x]. Since R[x, x−1] =
S−1R[x], it follows that R[x, x−1] is ∗-Armendariz by Proposition 7. �

Recall that a ring R is called right Ore if given a, b ∈ R with b regular
there exist a1, b1 ∈ R with b1 regular such that ab1 = ba1. Left Ore is defined
similarly and R is Ore ring if it is both right and left Ore. For ∗ rings, right
Ore implies left Ore and vice versa. It is a known fact that R is Ore if and only
if its classical quotient ring Q of R exists and for ∗-rings, ∗ can be extended to
Q by (a−1b)∗ = b∗(a∗)−1 (see[13, Lemma 4]).

Theorem 2. Let R be an Ore ∗-ring and Q be its classical quotient ∗-ring,
then R is ∗-Armendariz if and only if Q is ∗-Armendariz.

Proof. The sufficiency is clear by Proposition 3 while the necessity is similar
to that of [11, Theorem 12]. �

From [11, Theorem 12] and Theorem 2, we have the following.
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Corollary 6. If R is an Armendariz ∗-ring, then Q is ∗-Armendariz.

Corollary 7. If Q is an Armendariz ∗-ring, then R is ∗-Armendariz.

4 Polynomials on ∗-Baer ∗-rings

In this section, we show that the polynomial ∗-ring of ∗-Baer ∗-ring R is ∗-Baer
if R is ∗-Armendarize and example is given to show that this condition is not
superfluous. Other relative results are also given.

By a similar proof to [10, Lemma 8] or [2, Proposition 11], we have the
following.

Lemma 2. For a ∗-Abelian ∗-ring R. If e ∈ B∗(R[x]) (resp., e ∈ B∗(R[[x]])),
then e ∈ B∗(R).

As a consequence, we have the following Corollary, from Proposition 5.

Corollary 8. For a ∗-Armendariz ∗-ring R, if e is a projection in R[x] or
R[[x]], then e is a projection in R.

Proposition 8. Let R be a ∗-Armendariz ∗-ring, then R is a ∗-Baer ∗-ring if
and only if R[x] (resp., R[[x]]) is a ∗-Baer ∗-ring.

Proof. Assume that R is ∗-Baer. Let A be a nonempty subset of R[x] and B
be the set of all coefficients of elements of A, then B is a nonempty subset
of R and so r∗(B) = eRe for some projection e ∈ R. Since e ∈ r∗R[x](A) we
get eR[x]e ⊆ r∗R[x](A). Now let g = b0 + b1x + · · · + bmxm ∈ r∗R[x](A), then
b0, b1, · · · , bm ∈ r∗(B) = eRe, since R is ∗-Armendariz. Hence there exists
c0, c1, · · · , cm ∈ R such that g = ec0e + ec1ex + · · ·+ ecmexm = e(c0 + c1x +
· · ·+ cmxm)e ∈ eR[x]e and R[x] is ∗-Baer.
For sufficiency, we prove the result for R[x]. Let R[x] be ∗-Baer and D be a
subset of R. Since R[x] is ∗-Baer, then there exists a projection e(x) = e ∈ R,
by Corollary 8, such that r∗R[x](D) = eR[x]e. Hence r∗R(D) = eRe, since
r∗R(D) ⊆ r∗R[x](D) = eR[x]e. �

Since each reduced ∗-ring is ∗-Armendariz, we have:

Corollary 9. Let R be a reduced ∗-ring, then R is ∗-Baer if and only if R[x]
(resp., R[[x]]) is ∗-Baer.

The next examples shows that the conditions of ∗-Armendariz and reduced
in Proposition 8 and Corollary 9, respectively, are essential.

Example 10. By Example 6, the full matrix ∗-ring M3(Z3), with transpose
involution, is not ∗-Armendariz and from [9, Example 2.1] and [3], Mn(Z3) is



180 ∗-Armendariz property for involution rings

a ∗-Baer ∗-ring. Moreover, M3(Z3)[x] is not ∗-Baer, since r∗(

⎛
⎝ 0 0 2

0 1 0
0 0 0

⎞
⎠ +

⎛
⎝ 0 0 1

0 1 0
0 0 0

⎞
⎠x) cannot be generated by a projection.

Example 11. M2(Z3) is not reduced ∗-ring and from [9, Example 2.1] and [3],
Mn(Z3), with transpose involution, is a ∗-Baer ∗-ring. Moreover, M2(Z3)[x]

is not ∗-Baer, since r∗(
(

0 2
0 0

)
+

(
0 1
0 0

)
x) cannot be generated by a

projection.

Because each ∗-Baer ∗-ring is ∗-reduced, from Proposition 8, we have the
following.

Corollary 10. For a ∗-Armendariz ∗-ring R, we have the following:

1. If R is a ∗- Baer ∗-ring, then R[x] is ∗-reduced.
2. If R is a ∗-Baer ∗-ring, then R[[x]] is ∗-reduced.

5 Some extensions for ∗-rings having quasi-∗-
IFP

In this section, we generalize the property of having quasi-∗-IFP to some know
extensions; namely the localization of R to S, the Laurent polynomial ∗-ring
and the polynomial ∗-ring.

By a similar proof to Proposition 7 and using [1, Proposition 2.6], we get
analogous result for ∗-rings having quasi ∗-IFP.

Proposition 9. The ∗-ring R has quasi-∗-IFP if and only if S−1R has quasi-
∗-IFP.

Corollary 11. For a ∗-ring R, R[x] has quasi-∗-IFP if and only if R[x, x−1]
has quasi-∗-IFP.

Proof. By [1, Proposition 2.6], it suffices to prove necessity which can be done
as the proof of Corollary 5 using Proposition 9. �

Since each ∗-ring having ∗-IFP has quasi-∗-IFP, from Proposition 9, we have
the following relative results.

Corollary 12. If R has IFP, then S−1R has quasi-∗-IFP.

Corollary 13. If S−1R has IFP, then R has quasi-∗-IFP.
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Now, we show that the polynomial ∗-ring of a ∗-ring R having quasi-∗-IFP
has quasi-∗-IFP if R is ∗-Armendariz.

Proposition 10. For a ∗-ring R, if R[x] has quasi-∗-IFP, then so is R. The
converse holds when R is ∗-Armendariz.

Proof. Let R[x] have quasi-∗-IFP, then R has also quasi-∗-IFP, by [1, Proposi-
tion 2.6].
Conversely, let f(x) =

∑m
i=0 aix

i and g(x) =
∑n

j=0 bjx
j ∈ R[x] satisfy f(x)g(x) =

f(x)g∗(x) = 0. Since R is ∗-Armendariz, aibj = 0 = aib
∗
j for each i, j.

But R has quasi-∗-IFP, hence aickbj = 0 for each i, j and k. It follows
thatf(x)h(x)g(x) = 0 such that h(x) =

∑l
k=0 ckxk ∈ R[x] and so R[x] has

quasi-∗-IFP. �
From Proposition 10, we have:

Corollary 14. If R is a reduced ∗-ring and has quasi-∗-IFP, then R[x] has
quasi-∗-IFP.
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