East-West J. of Mathematics: Vol. 21, No 2 (2019) pp. 171-181 https://doi.org/10.36853/ewjm0361

*-ARMENDARIZ PROPERTY FOR INVOLUTION RINGS

Usama A. Aburawash and Basmaa M. ELgamudi[†]

Dept. of Mathematics and Computer Science, Faculty of Science Alexandria University, Alexandria, Egypt e-mail: aburawash@alexu.edu.eg

> [†] Faculty of Science, Benghazi University, Benghazi, Libya. e-mail: basmagamudi@gmail.com

Abstract

In this paper we study Armendariz property for *-rings. We introduce the class of *-Armendariz *-rings, which contains reduced *-rings, and its properties are studied. We prove that each *-Armendariz *-ring is *-Abelian. Moreover, we show that the property of a *-Armendariz *-ring R is extended to its polynomial *-ring R[x], localization $S^{-1}R$ of R to S, Laurent polynomial *-ring $R[x, x^{-1}]$ and from Ore *-ring to its classical Quotient Q. Furthermore, we prove that for a *-Armendariz *-ring R; R is *-Baer if and only if R[x] (resp., R[[x]]) is also *-Baer. Finally, we show that the property of *-ring having quasi-*-IFP R can be extendeded to its localization of R to S, Laurent polynomial *-ring and polynomial *-ring.

1 Introduction

By a ring we always mean an associative ring with identity. A ring R is said to be *-*ring* if on R there is defined an involution *. *-rings are objects of the category of rings with involution with morphisms also preserving involution. Therefore the consistent way of investigating *-rings is to study them within this category, as done in a series of papers (for instance [4], [3] and [1]). The

 $[\]label{eq:Keywords: reduced *-rings, *-Armendariz *-rings, *-Baer *-rings, quasi-*-IFP *-rings, IFP *-rings, *-Abelian *-rings.$

AMS Classification 2010: Primary 16W10; Secondary 16N60 and 16D25.

purpose of this note is to study *-Armendariz *-rings within its category. The right annihilator of the nonempty set A of R is denoted by $r_R(A)$ and the *-right annihilator of A is denoted by $r_{*R}(A) = \{x \in R \mid Ax = Ax^* = 0\}$. If there is no ambiguity, we write r(A) and $r_*(A)$ for $r_R(A)$ and $r_{*R}(A)$, respectively. A self adjoint idempotent element e (that is $e^* = e = e^2$) is called *projection*. A *-ring R is said to be *Abelian* (*-*Abelian*) if every idempotent (projection) of R is central. We denote the set of all projections of R by $\mathcal{B}_*(R)$. Recall from [4], a nonzero element a of a *-ring R is a *-zero divisor if $ab = 0 = a^*b$ for some nonzero element $b \in R$. Obviously, a *-zero divisor element is zero divisor, but the converse is not true [4, Example 3]. A *-ring R is said to have *IFP* (quasi-*-*IFP*) if for all $a, b \in R, ab = 0$ ($ab = 0 = ab^*$) implies aRb = 0 ([11], [1]). R is reversible if ab = 0 implies ba = 0 ([7]).

The study of Armendariz rings which is related to polynomial rings, was initiated by Armendariz [5] and Rege and Chhawchharia [14]. A ring R is called Armendariz if whenever polynomials $f(x) = a_0 + a_1x + \ldots + a_mx^m, g(x) = b_0 + b_1x + \ldots + b_nx^n \in R[x]$ satisfy f(x)g(x) = 0, then $a_ib_j = 0$ for each i, j. (The converse is obviously true). Recall from [3], an element a of R is said to be *-nilpotent if $(aa^*)^n = 0$ and $a^m = 0$ for some positive integers n and m. A *ring R is called reduced (*-reduced) if it has no nonzero nilpotent (*-nilpotent) elements. Reduced rings are Armendariz by [6, Lemma1]. Following [8], a *-ring R is said to be Baer *-ring if the right annihilator of every nonempty subset of R is generated, as a right ideal, by a projection. In [3], a generalization of Baer *-ring. A *-ring R is said to be a *-Baer *-ring if the *-right annihilator of every nonempty subset A of R is a principal *-bideal generated by a projection: that is $r_*(A) = eRe$.

An involution * is called *proper* (resp., *semiproper*) if $aa^* = 0$ (resp., $aRa^* = 0$) implies a = 0, for every element $a \in R$. A proper involution is clearly semiproper. Moreover, several examples are included which answers questions that occur naturally in the process of this paper.

Throughout this paper, the integers modulo n will be denoted by \mathbb{Z}_n , the field will be denoted by \mathbb{F} and $\mathbb{M}_n(R)$ will denote the full matrix ring of all $n \times n$ matrices over the ring R, while $T_n(R)$ $(T_{nE}(R))$ will denote the $n \times n$ upper triangular matrix ring (with equal diagonal elements) over R. Furthermore, for a commutative ring R, the involution \diamond defined on $\mathbb{T}_{nE}(R)$ for n > 2 is given by replacing each entry by its involutive image and fixing the two diagonals considering the diagonal right upper / left lower as symmetric ones and interchanging the symmetric elements about it. For n = 2 (trivial extension $\mathbb{T}(R, R)$, the involution \diamond is the adjoint involution.

2 *-Armendariz *-Rings

In this section, we introduce Armendariz property for *-rings. If R is a *-ring, then the involution * can naturally be extended to R[x] as:

$$(f(x))^* = (\sum_{i=0}^m a_i x^i)^* = \sum_{i=0}^m a_i^* x^i$$
 for all $f(x) \in R[x]$.

Definition. A *-ring R is called *-Armendariz if whenever the polynomials $f(x) = a_0 + a_1x + \ldots + a_mx^m$ and $g(x) = b_0 + b_1x + \ldots + b_nx^n \in R[x]$ satisfy $f(x)g(x) = f(x)g^*(x) = 0$, then $a_ib_j = 0$ for all i, j (consequently $a_ib^*_j = 0$).

Since each Armendariz *-ring is clearly *-Armendariz and each reduced ring is Armendariz [6, Lemma 1], then we have the following.

Proposition 1. Each reduced *-ring is *-Armendariz.

The converse of the previous proposition is not true as shown by the following example:

Example 1. Consider the *-ring $R = \begin{pmatrix} 0 & \mathbb{F} \\ 0 & 0 \end{pmatrix}$, with adjoint involution * defined by: $\begin{pmatrix} a & b \\ 0 & c \end{pmatrix}^* = \begin{pmatrix} c & -b \\ 0 & a \end{pmatrix}$. *R* is Armendariz [10, Example 14] and so *-Armendariz. Moreover, *R* is not reduced since the nonzero matrix $A = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$ satisfies $A^2 = 0$.

Example 2. Consider the *-ring $R = \begin{pmatrix} \mathbb{Z}_4 & \mathbb{Z}_4 \\ 0 & \mathbb{Z}_4 \end{pmatrix}$, with the adjoint involution *. R is not *-Armendariz. Indeed, the polynomials $f(x) = \begin{pmatrix} 2 & 2 \\ 0 & 0 \end{pmatrix} + \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} x, g(x) = \begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix} + \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} x$, satisfy $f(x)g(x) = f(x)g^*(x) = 0$, while $\begin{pmatrix} 2 & 2 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 2 \\ 0 & 0 \end{pmatrix} \neq 0$.

For the polynomial $f \in R[x]$ of degree m with $f = \sum_{i=0}^{m} a_i x^i$, let $S_f = \{a_0, a_1, \cdots, a_m\}$.

Corollary 1. Let R be a reduced *-ring and $U \subseteq R[x]$. If $T = U_{f \in U}S_f$ then $r_{*R[x]}(U) = r_*(T)[x]$.

Proof. Let $g = \sum_{j=0}^{n} b_j x^j \in R[x]$ and $Ug = Ug^* = 0$, then $fg = fg^* = 0$ for all $f \in U$ if and only if $a_i b_j = a_i b_j^* = 0$ for all $a_i \in S_f, b_j \in R, 0 \le j \le n$, by Proposition 1, which imply

$$S_f b_j = S_f b_j^* = 0$$
$$US_f b_j = US_f b_j^* = 0$$
$$Tb_j = Tb_j^* = 0.$$

Hence $b_i \in r_*(T)$. The opposite inclusion is clear.

The question when a *-Armendariz *-ring is Armendariz has a partial answer in Proposition 2, where we need the following Lemma, which can be easily proved.

Lemma 1. Let R be a reduced *-ring and $f, g \in R[x]$ with $f(x) = \sum_{i=0}^{m} a_i x^i$ and $g(x) = \sum_{j=0}^{n} b_j x^j$. Then $f(gg^*) = f(gg^*)^* = 0$ if and only if $a_i b_j b_{k-(i+j)}^* = 0$ for all $0 \le i, j \ge k, j \le k \le m+n$.

Proposition 2. Let R be a *-Armendariz *-ring with proper involution, then R is Armendariz.

Proof. Let f(x)g(x) = 0 for some $f(x), g(x) \in R[x]$. Then $0 = f(gg^*) = f(gg^*)^*$ implies $a_ic_k = 0$, since R *-Armendariz and $c_k = \sum_{j=0}^k b_j b^*_{k-j}$. Hence $\sum_{i=0}^k \sum_{j=0}^k a_i(b_j b^*_{k-(i+j)}) = 0$ and consequently $a_i b_j b^*_{k-(i+j)} = 0$. Now $(a_i b_j)(a_i b_j)^* = a_i b_j b^*_j a^*_i = 0$. Since * is proper then $a_i b_j = 0$, which

Now $(a_i b_j)(a_i b_j)^* = a_i b_j b_j^* a_i^* = 0$. Since * is proper then $a_i b_j = 0$, which means that R is Armendariz.

One can easily show that the class of *-Armendariz *-rings is closed under direct sums (with changeless involution) and under taking *-subrings.

Proposition 3. The class of *-Armendariz *-rings is closed under direct sums and under taking *-subrings.

Using direct proof, we can find *-subrings of $\mathbb{T}_{3E}(R)$, which are *-Armendariz as follows.

Proposition 4. Let R be a commutative reduced *-ring, then the \diamond -ring $\mathbb{T}_{3E}(R)$, with adjoint involution \diamond is \diamond -Armendariz.

Corollary 2. Let R be a commutative reduced *-ring, then the \diamond -ring $\mathbb{T}(R, R)$, with adjoint involution \diamond is \diamond -Armendariz.

The reduced condition in Proposition 4 and Corollary 2 is essential according to the following examples:

Example 3. \mathbb{Z}_4 is not reduced *-ring and the \diamond -ring $\mathbb{T}_{3E}(\mathbb{Z}_4)$ is not \diamond -Armendariz.

Indeed, the polynomial
$$f(x) = \begin{pmatrix} 0 & 2 & 0 \\ 0 & 0 & 2 \end{pmatrix} + \begin{pmatrix} 0 & 2 & 0 \\ 0 & 0 & 2 \end{pmatrix} x$$
, satisfies $(f(x))^2 = f(x)f^{\diamond}(x) = 0$, while $\begin{pmatrix} 2 & 0 & 1 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{pmatrix} \begin{pmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{pmatrix} = \begin{pmatrix} 0 & 0 & 2 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \neq 0$.

Example 4. Again \mathbb{Z}_8 is not reduced *-ring and the \diamond -ring $\mathbb{T}(\mathbb{Z}_8, \mathbb{Z}_8)$ is not \diamond -Armendariz. Indeed, the polynomial $f(x) = \begin{pmatrix} 4 & 0 \\ 0 & 4 \end{pmatrix} + \begin{pmatrix} 4 & 1 \\ 0 & 4 \end{pmatrix} x$, satisfies $(f(x))^2 = f(x)f^{\diamond}(x) = 0$, while $\begin{pmatrix} 4 & 0 \\ 0 & 4 \end{pmatrix} \begin{pmatrix} 4 & 1 \\ 0 & 4 \end{pmatrix} = \begin{pmatrix} 0 & 4 \\ 0 & 0 \end{pmatrix} \neq 0$.

174

Based on Proposition 4, one may suspect that $\mathbb{T}_{nE}(R)$ is also \diamond -Armendariz for all $n \geq 4$. But the following example discards this possibility.

is not \diamond -Armendariz. Similarly, for all $n \geq 5$.

The full matrix $\mathbb{M}_n(R)$ over a *-ring R with transpose involution is not *-Armendariz, for $n \geq 3$, according to the following examples:

 $\begin{aligned} \mathbf{Example 6. The *-ring } \mathbb{M}_{3}(R) \text{ is not *-Armendariz. Indeed, the polynomials}} \\ f(x) &= \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} + \begin{pmatrix} -1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} x, g(x) = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} + \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix} x, \\ \text{satisfy } f(x)g(x) &= f(x)g^{*}(x) = 0, \text{ while} \\ \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \neq 0. \end{aligned}$

Using the terminology of Corollary 2, the next example declare that the trivial extension of the trivial extension $\mathbb{T}(R, R)$ (that is; $\mathbb{T}(\mathbb{T}(R, R), \mathbb{T}(R, R))$)

of a commutative reduced *-ring is not \diamond -Armendariz.

Example 8. Let R be a commutative reduced *-ring. Then the \diamond -ring $\mathbb{T}(R, R)$ is \diamond -Armendariz by Corollary 2 and the \diamond -ring

$$P = \left\{ \begin{pmatrix} A & B \\ 0 & A \end{pmatrix} : A, B \in \mathbb{T}(R, R) \right\} \text{ is not }\diamond\text{-Armendariz. Indeed, the polynomial} f(x) = \left\{ \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} & \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} & \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} \\ \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} & \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \end{pmatrix} + \left\{ \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} & \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \\ \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} & \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \\ \text{satisfy } (f(x))^2 = f(x)f^\diamond(x) = 0, \text{ while} \\ \left\{ \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} & \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} \\ \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} & \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \\ \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} & \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \\ \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} & \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \\ \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} & \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \end{pmatrix} \neq 0.$$

Next, we prove the involutive version of results due to Lee and Zhou ([12]).

Proposition 5. Every *-Armendariz *-ring is *-Abelian.

Proof. Let $(ax+b)(a_1x+b_1) = (ax+b)(a_1x+b_1)^* = 0$. If *R* is not *-Armendariz then $-ba_1 = ab_1 \neq 0$ and $-ba_1^* = ab_1^* \neq 0$; equivalently $br_*(a) \cap ar_*(b) \neq 0$, where $r_*(a)$ (resp., $r_*(b)$) is the a *-right annihilator of *a* (resp., *b*). Since *R* is *-Armendariz, we have $-ba_1 = ab_1 = 0$ and $-ba_1^* = ab_1^* = 0$, hence $br_*(a) \cap ar_*(b) = 0$. Let $e_1, e_2 \in R$ be projections and take $b = e_1$ and a = $1 - e_2$. Noting that $r_*(b) = (1 - e_1)R(1 - e_1)$ and $r_*(a) = e_2Re_2$, we get $e_1e_2Re_2 \cap (1 - e_2)(1 - e_1)R(1 - e_1) = 0$. Further, suppose that $e_2e_1 = 0$, then $e_1e_2e_2 = e_1e_2 = (1 - e_2)(1 - e_1)(-e_2)(1 - e_1) \in e_1e_2Re_2 \cap (1 - e_2)(1 - e_1)R(1 - e_1) = 0$. Thus for any idempotent $e \in R$ and any element $r \in R$, $x_1 =$ $e+er(1-e), x_2 = e+(1-e)re$ are idempotents satisfy $(1-e)x_1 = 0, x_2(1-e) = 0$ and so $x_1(1 - e) = 0, (1 - e)x_2 = 0$. Hence er(1 - e) = 0, re(1 - e) = 0 which imply er = ere, re = ere. Thus *R* is Abelian and consequently *-Abelian. \Box

The converse of Proposition 5 is not true according to the following example:

Example 9. By Example 5, the \diamond -ring $\mathbb{T}_{4E}(\mathbb{Z}_2)$ is not \diamond -Armendariz and the											
	(0	0	0	0		1	1	0	0	0)	
only projections of it are		0	0	0	and		0	1	0	0	1 • 1
		0	0	0			0	0	1	0	which are
	10	0	0	0 /			0	0	0	1 /	
control Honce $\mathbb{T}_{\mathcal{T}}(\mathbb{Z}_{2})$ is \wedge Abelian											

central. Hence $\mathbb{T}_{4E}(\mathbb{Z}_2)$ is \diamond -Abelian.

A necessary and sufficient conditions for a *-ring R to be *-Armendariz is now given.

Proposition 6. For a *-ring R, the following statements are equivalent: 1. R is *-Armendariz.

2.eR and (1-e)R are *-Armendariz for every projection e of R.

Proof. $1 \Rightarrow 2$ is obvious by Proposition 3. $2 \Rightarrow 1$. Let $f(x)g(x) = f(x)g^*(x) = 0$ with $f(x) = \sum_{i=0}^m a_i x^i, g(x) = \sum_{j=0}^n b_j x^j$ $\in R[x]$, then $ef(x)g(x) = ef(x)eg(x) = ef(x)g^*(x) = ef(x)eg^*(x) = 0$ and $(1-e)f(x)g(x) = (1-e)f(x)(1-e)g(x) = (1-e)f(x)g^*(x) = (1-e)f(x)(1-e)g^*(x) = 0$, since e is central. By assumption, we have $ea_ib_j = 0$ and $(1-e)a_ib_j = 0$ for all $0 \le i \le m, 0 \le j \le n$. Hence $a_ib_j = ea_ib_j + (1-e)a_ib_j = 0$ and R is *-Armendariz.

In the end of this section, we summarize our main results as follows: $Reduced \Rightarrow Armendariz \Rightarrow Abelian$

 $\begin{array}{ccc} & & & & \\ & & & \\ *-Armendariz & \Rightarrow & *-Abelian \end{array}$

3 Extensions of *-Armendariz *-rings

In this section, we generalize the property of *-Armendariz to some know extensions; namely the polynomial *-ring, the Laurent polynomial *-ring, the localization of R to S and from Ore *-ring to its classical Quotient.

Theorem 1. A *-ring R is *-Armendariz if and only if R[x] is *-Armendariz.

Proof. Let R be a *-Armendariz *-ring and $f(y)g(y) = f(y)g^*(y) = 0$ with $f(y) = f_0 + f_1y + \dots + f_my^m, g(y) = g_0 + g_1y + \dots + g_ny^n \in R[x][y]$ with $f_i, g_j \in R[x]$. Let $t = \deg f_0 + \deg f_1 + \dots + \deg f_m + \deg g_0 + \deg g_1 + \dots + \deg g_n$ where the degree is as polynomials in x and the degree of the zero polynomials is taken to be zero. Then $f(x^t) = f_0 + f_1x^t + \dots + f_mx^{tm}, g(x^t) = g_0x^t + g_1x^t + \dots + g_nx^{tn} \in R[x]$ and the set of coefficients of the f_i 's (resp., g_j 's) equals the set of coefficients of the $f(x^t)$ (resp., $g(x^t)$). Since $f(y)g(y) = f(y)g^*(y) = 0$ and x commutes with elements of R, $f(x^t)g(x^t) = f(x^t)g^*(x^t) = 0$. Since R is *-Armendariz, each coefficients of f_i annihilates each coefficients of g_i . Thus $f_ig_i = 0$. The sufficient condition is clear by Proposition 3.

Let R be a *-ring and S be a multiplicatively closed subset of R consisting of nonzero central regular elements, then the localization of R to S is the *-ring $S^{-1}R = \{u^{-1}a | u \in S, a \in R\}$, with involution * defined as:

$$(u^{-1}a)^* = u^{*-1}a^*$$

Proposition 7. A *-ring R is *-Armendariz if and only if $S^{-1}R$ is *-Armendariz.

Proof. By Proposition 3, it suffices to prove the necessary condition. Let R be a *-Armendariz *-ring and $F(x)G(x) = F(x)G^*(x) = 0$ with $F(x) = \sum_{i=0}^{m} \alpha_i x^i, G(x) = \sum_{j=0}^{n} \beta_j x^j \in S^{-1}R[x]$, where $\alpha_i = u^{-1}a_i, \beta_j = v^{-1}b_j$, and $a_i, b_j \in R, u, v \in S$. Hence *-Armendariz property for involution rings

$$\begin{split} F(x)G(x) &= (u^{-1}a_0 + u^{-1}a_1x + \dots + u^{-1}a_mx^m)(v^{-1}b_0 \\ &+ v^{-1}b_1x + \dots + v^{-1}b_nx^n) \\ &= u^{-1}v^{-1}a_0b_0 + u^{-1}v^{-1}(a_0b_1 + a_1b_0)x + \dots \\ &+ u^{-1}v^{-1}(a_0b_n + \dots + a_mb_0)x^{m+n} \\ &= (vu)^{-1}(a_0b_0 + (a_0b_1 + a_1b_0)x + \dots \\ &+ (a_0b_n + \dots + a_mb_0)x^{m+n}) \\ &= (vu)^{-1}f(x)g(x) = 0, \\ F(x)G^*(x) &= (u^{-1}a_0 + u^{-1}a_1x + \dots + u^{-1}a_mx^m)(v^{-1^*}b_0^* \\ &+ v^{-1^*}b_1^*x + \dots + v^{-1^*}b_n^*x^n) \\ &= u^{-1}v^{*-1}a_0b_0^* + u^{-1}v^{*-1}(a_0b_1^* + a_1b_0^*)x + \dots \\ &+ u^{-1}v^{*-1}(a_0b_n^* + \dots + a_mb_0^*)x^{m+n} \\ &= (v^*u)^{-1}(a_0b_0^* + (a_0b_1^* + a_1b_0^*)x + \dots \\ &+ (a_0b_n^* + \dots + a_mb_0^*)x^{m+n}) \\ &= (v^*u)^{-1}f(x)g^*(x) = 0. \end{split}$$

since S is contained in the center of R, so $f(x)g(x) = f(x)g^*(x) = 0$. By hypothesis $a_ib_j = 0$ which implies $\alpha_i\beta_j = (vu)^{-1}a_ib_j = 0$. Therefore $S^{-1}R$ is *-Armendariz.

From Proposition 7, the following results are straightforward. Corollary 3. If R is an Armendariz *-ring, then $S^{-1}R$ is *-Armendariz. Corollary 4. If $S^{-1}R$ is an Armendariz *-ring, then R is *-Armendariz.

The *-ring of Laurent polynomials in x, with coefficients in a *-ring R, consists of all formal sum $f(x) = \sum_{i=k}^{m} a_i x^i$ with obvious addition and multiplication, where $a_i \in R$ and k, m are (possibly negative) integers and with involution * defined as $f^*(x) = \sum_{i=k}^{m} a_i^* x^i$. We denote this ring as usual by $R[x, x^{-1}]$.

Corollary 5. For a *-ring R, R[x] *-Armendariz if and only if $R[x, x^{-1}]$ *-Armendariz.

Proof. The sufficient condition is obvious by Proposition 3. Clearly $S = \{1, x, x^2, \dots\}$ is a multiplicatively closed subset of R[x]. Since $R[x, x^{-1}] = S^{-1}R[x]$, it follows that $R[x, x^{-1}]$ is *-Armendariz by Proposition 7.

Recall that a ring R is called right Ore if given $a, b \in R$ with b regular there exist $a_1, b_1 \in R$ with b_1 regular such that $ab_1 = ba_1$. Left Ore is defined similarly and R is *Ore ring* if it is both right and left Ore. For * rings, right Ore implies left Ore and vice versa. It is a known fact that R is Ore if and only if its classical quotient ring Q of R exists and for *-rings, * can be extended to Q by $(a^{-1}b)^* = b^*(a^*)^{-1}$ (see[13, Lemma 4]).

Theorem 2. Let R be an Ore *-ring and Q be its classical quotient *-ring, then R is *-Armendariz if and only if Q is *-Armendariz.

Proof. The sufficiency is clear by Proposition 3 while the necessity is similar to that of [11, Theorem 12].

From [11, Theorem 12] and Theorem 2, we have the following.

Corollary 6. If R is an Armendariz *-ring, then Q is *-Armendariz.

Corollary 7. If Q is an Armendariz *-ring, then R is *-Armendariz.

4 Polynomials on *-Baer *-rings

In this section, we show that the polynomial *-ring of *-Baer *-ring R is *-Baer if R is *-Armendarize and example is given to show that this condition is not superfluous. Other relative results are also given.

By a similar proof to [10, Lemma 8] or [2, Proposition 11], we have the following.

Lemma 2. For a *-Abelian *-ring R. If $e \in \mathcal{B}_*(R[x])$ (resp., $e \in \mathcal{B}_*(R[[x]])$), then $e \in \mathcal{B}_*(R)$.

As a consequence, we have the following Corollary, from Proposition 5.

Corollary 8. For a *-Armendariz *-ring R, if e is a projection in R[x] or R[[x]], then e is a projection in R.

Proposition 8. Let R be a *-Armendariz *-ring, then R is a *-Baer *-ring if and only if R[x] (resp., R[[x]]) is a *-Baer *-ring.

Proof. Assume that R is *-Baer. Let A be a nonempty subset of R[x] and B be the set of all coefficients of elements of A, then B is a nonempty subset of R and so $r_*(B) = eRe$ for some projection $e \in R$. Since $e \in r_{*R[x]}(A)$ we get $eR[x]e \subseteq r_{*R[x]}(A)$. Now let $g = b_0 + b_1x + \cdots + b_mx^m \in r_{*R[x]}(A)$, then $b_0, b_1, \cdots, b_m \in r_*(B) = eRe$, since R is *-Armendariz. Hence there exists $c_0, c_1, \cdots, c_m \in R$ such that $g = ec_0e + ec_1ex + \cdots + ec_mex^m = e(c_0 + c_1x + \cdots + c_mx^m)e \in eR[x]e$ and R[x] is *-Baer.

For sufficiency, we prove the result for R[x]. Let R[x] be *-Baer and D be a subset of R. Since R[x] is *-Baer, then there exists a projection $e(x) = e \in R$, by Corollary 8, such that $r_{*R[x]}(D) = eR[x]e$. Hence $r_{*R}(D) = eRe$, since $r_{*R}(D) \subseteq r_{*R[x]}(D) = eR[x]e$.

Since each reduced *-ring is *-Armendariz, we have:

Corollary 9. Let R be a reduced *-ring, then R is *-Baer if and only if R[x] (resp., R[[x]]) is *-Baer.

The next examples shows that the conditions of *-Armendariz and reduced in Proposition 8 and Corollary 9, respectively, are essential.

Example 10. By Example 6, the full matrix *-ring $\mathbb{M}_3(\mathbb{Z}_3)$, with transpose involution, is not *-Armendariz and from [9, Example 2.1] and [3], $\mathbb{M}_n(\mathbb{Z}_3)$ is

a *-Baer *-ring. Moreover, $\mathbb{M}_{3}(\mathbb{Z}_{3})[x]$ is not *-Baer, since $r_{*}\begin{pmatrix} 0 & 0 & 2 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix} + \begin{pmatrix} 0 & 0 & 1 \end{pmatrix}$

 $\left(\begin{array}{ccc} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{array}\right) x) \text{ cannot be generated by a projection.}$

Example 11. $\mathbb{M}_2(\mathbb{Z}_3)$ is not reduced *-ring and from [9, Example 2.1] and [3], $\mathbb{M}_n(\mathbb{Z}_3)$, with transpose involution, is a *-Baer *-ring. Moreover, $\mathbb{M}_2(\mathbb{Z}_3)[x]$ is not *-Baer, since $r_*(\begin{pmatrix} 0 & 2 \\ 0 & 0 \end{pmatrix} + \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} x)$ cannot be generated by a projection.

Because each $\ast\text{-Baer}$ $\ast\text{-ring}$ is $\ast\text{-reduced},$ from Proposition 8, we have the following.

Corollary 10. For a *-Armendariz *-ring R, we have the following:

- 1. If R is a *-Baer *-ring, then R[x] is *-reduced.
- 2. If R is a *-Baer *-ring, then R[[x]] is *-reduced.

5 Some extensions for *-rings having quasi-*-IFP

In this section, we generalize the property of having quasi-*-IFP to some know extensions; namely the localization of R to S, the Laurent polynomial *-ring and the polynomial *-ring.

By a similar proof to Proposition 7 and using [1, Proposition 2.6], we get analogous result for *-rings having quasi *-IFP.

Proposition 9. The *-ring R has quasi-*-IFP if and only if $S^{-1}R$ has quasi-*-IFP.

Corollary 11. For a *-ring R, R[x] has quasi-*-IFP if and only if $R[x, x^{-1}]$ has quasi-*-IFP.

Proof. By [1, Proposition 2.6], it suffices to prove necessity which can be done as the proof of Corollary 5 using Proposition 9. \Box

Since each *-ring having *-IFP has quasi-*-IFP, from Proposition 9, we have the following relative results.

Corollary 12. If R has IFP, then $S^{-1}R$ has quasi-*-IFP.

Corollary 13. If $S^{-1}R$ has IFP, then R has quasi-*-IFP.

180

Now, we show that the polynomial *-ring of a *-ring R having quasi-*-IFP has quasi-*-IFP if R is *-Armendariz.

Proposition 10. For a *-ring R, if R[x] has quasi-*-IFP, then so is R. The converse holds when R is *-Armendariz.

Proof. Let R[x] have quasi-*-IFP, then R has also quasi-*-IFP, by [1, Proposition 2.6].

Conversely, let $f(x) = \sum_{i=0}^{m} a_i x^i$ and $g(x) = \sum_{j=0}^{n} b_j x^j \in R[x]$ satisfy $f(x)g(x) = f(x)g^*(x) = 0$. Since R is *-Armendariz, $a_i b_j = 0 = a_i b_j^*$ for each i, j. But R has quasi-*-IFP, hence $a_i c_k b_j = 0$ for each i, j and k. It follows that f(x)h(x)g(x) = 0 such that $h(x) = \sum_{k=0}^{l} c_k x^k \in R[x]$ and so R[x] has quasi-*-IFP. \Box

From Proposition 10, we have:

Corollary 14. If R is a reduced *-ring and has quasi-*-IFP, then R[x] has quasi-*-IFP.

References

- [1] U. A. Aburawash and M. Saad. *-reversible and *-reflexive properties for rings with involution. Submitted.
- [2] U. A. Aburawash and M. Saad. On biregular, IFP and quasi-Baer *-rings. East-West J. Math., 16 (2014), 182–192.
- [3] U. A. Aburawash and M. Saad. *-Baer property for rings with involution. Studia Sci. Math. Hungar, 53 (2016), 243-255.
- [4] U. A. Aburawash and K. B. Sola. *-zero divisors and *-prime ideals. East-West J. Math., 12 (2010), 27–31.
- [5] D.D. Anderson and V. Camillo. Armendariz rings and Gaussian rings. Comm. Algebra, 26 (1998), 2265–2272.
- [6] E.P. Armendariz. A note on extensions of Baer and p.p.-rings. J. Austral. Math. Soc., 18 (1974),470–473.
- [7] P.M. Cohn. Reversible rings. London Math. Soc., 31 (1999), 641–648.
- [8] I. Kaplansky. "Rings of operators". Benjamin New York (1965).
- [9] G. F. Birkenmeiera, J. Y. Kim and J. K. Park. Polynomial extensions of Baer and quasi-Baer rings. J. Pure Appl. Algebra, 159 (2001), 25–42.
- [10] N.K. Kim and Y. Lee. Armendariz rings and reduced rings. J. Algebra, 223 (2000), 477–488.
- [11] C. Huh, Y. Lee and A. Smoktunowice. Armendariz rings and semicommutative rings. Comm Algebra, 30(2002), 751–761.
- [12] T.K. Lee and Y.Zhou. Armendariz and reduced rings. Comm. Algebra, 32(2004), 2287–2299.
- [13] W. S. Martindale. Rings with involution and polynomial identities. J. Algebra, 11 (1969), 186–194.
- [14] M. B. Rege and S. Chhawchharia. Armendariz rings. Proc. Japan Acad. Ser A Math. Sci, 73 (1997), 14–17.