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Abstract

In this paper, we give some integral inequalities in finite measure
spaces. By using these results, we establish some Jensen and Hermite-
Hadamard type inequalities for convex functions via fractional integrals.

1 Introduction

Although arising from geometric, the convexity plays an important role in
mathematical analysis; especially, in the study of mathematical inequalities it
provides a very useful tool for estimating the integral mean value of a function
defined on a closed interval. Some famous results for such estimations consist
of Hermite-Hadamard, trapezoid, or Ostrowski inequalities, ect.

If f:[a,b] — R is a integrable convex function on [a,b], the Hermite-
Hadamard inequality states (see, for example, [10]) that

If f is a integrable concave function, the inequality (1.1) is reversed. For some
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generalizations, improvements and extensions of the inequality (1.1), please see
[7, 10] and references therein.

The error in estimating the left hand-side of (1.1) is closely related to the
Ostrowski inequality; it reads (see, for example, [8]) that if f : [a,b] — R
is a differentiable function on (a,b) having the property |f/'(¢t)] < M for all
t € (a,b), then

a+b

1 x— 45 ’
< Z+< b—_a ) (b—a)M (12)

b
%@V—E%E/1ﬂﬂﬁ

for all z € [a,b]. In 2015, the inequality (1.2) was extended to a functional
generalization by Dragomir as follows.

Theorem 1.1 ([8]). Let f : [a, b; — R be absolutely continuous on [a,b]. If
®: R — R is convexr on R, the following inequality holds:

1 b 1 T , b ,
@ (1)~ 7 [ 1) < = | [T el - arwlas [ ele-nrow) a
for all z € [a, b].
Also, the error in estimating the right hand-side of (1.1) is closely related
to the trapezoid inequality which states (see, for example, [10]) that if f :

[a,b] — R is differentiable on (a,b) with its derivative having the property
—c0 <y < fl(x) <T < oo for all x € (a,b), then we have

flay+f0) 1 [°
’ _b—a/a f(x)dx

—a

b
8

5 < I=7). (1.4)

This result was extended to the generalized trapezoid formula, namely, inequal-
ities provide upper bounds for the quantity

—a a — X b
o@D L[

3

for any = € [a,b]. In 2015, Dragomir [9] gave a functional generalization of
generalized trapezoid inequalities as follows.

Theorem 1.2 ([9]). Let f : [a,b] — R be a Lebesgue integrable function on
[a,b]. If ® : R — R is convex on R, then we have the following inequality

b
¢<@—wﬂ?jf—wﬂw_biméf@ﬁ>

b—=x
(b—a)?

(1.5)

Tr—a

b
< =z [ ol - e+

b
[ oo - swar

for all z € [a, b].
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To obtain inequalities (1.3) and (1.5), the author used the Montgomery
identity (see [15] for details about this identity) and the property of convex
functions.

A subtle combination between estimations of the left and right hand-side of
(1.1) leads to the Simpson type inequalities. In [10], the authors investigated
the extended Simpson-type inequalities. Namely, it provides upper bounds for
the quantity

a[iﬂx};f@)] +(l—a)f (a;b> —ﬁ/abf(t)dt

3

where 0 < o < 1,7 € [a, 2] and y € [%£2, b], please see [10] for details.

Another well-known inequality related to the left hand-side of (1.1) is the
Jensen integral inequality, see, for example, [1]. In recent years, the inequalities
(1.1),(1.2), (1.4) as well as the Jensen inequality were improved and generalized
to the framework of fractional integrals, see [1, 3, 4, 6, 7, 14, 16].

The main goal of the paper is to establish some Jensen, Hermite-Hadamard
type inequalities and functional generalizations for Ostrowski and trapezoid
type inequalities via fractional integrals. To obtain such results, we utilize a
very simple and non-traditional method. More precisely, we propose some gen-
eral inequalities in finite measure spaces, and then choose the suitable measure
spaces to get the desired inequalities.

2 Integral inequalities for convex functions

The main purpose of this section is to propose some integral inequalities of
generalized Hermite-Hadamard type in finite measure spaces.

Theorem 2.1. Let (X, F, 1) be a measure space with X compact. Let f : X —
R be a continuous function such that

m = }crg)r(lf(x) < Iglg}({f(x) =: M.

Let I, J € F satisfy that u(I)+p(J) = 1. Then, for any « € R, 3 € R and any
continuously convez function ® : R — R, the following inequalities hold:

@ (au(1) + Bu()) - ﬁ /X F(t)du(t))

1
<5 /X @ (ap(1) + Bu(7) — 1(1)) du(t) o
1 1
<) [ Bl = FO)ute) + 1) s /X (6 — f())dp(t)
< WD M(a) + u(JIM(B),
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where
M(o) = Me(a —m) —m®(a— M)
M —m (2.2)
(o —m) — ’
- V- 7 [ o)
Proof. Since pu(X) < +00, we can write
on(1) + (7)== [ SO0 = —= [ fouD) +Bu7) = 0] dute.
It follows from Jensen’s integral inequality (see, for example, [1]) that
(oD +00(7) = [ 50 57 [ #(en0on)=10) dute.
(2.3)

On the other hand, by the convexity of ® and the hypothesis pu(I) + p(J) = 1,
we infer that

/X (ap(l) + BulJ) — £(t))dult)
- /X B ([a— FOuI) + 18— FOL()) du(t) (2.4)
< () /X o — F(0))du(t) + () /X B(5— F(1))du(t).

A combination of (2.3) and (2.4) yields the first two inequalities in (2.1).
To obtain the other inequality in (2.1), we write

Then,
Dla— f(t) < (1 — %)@(a - M)+ %_—fr(r? D(av —m)

by the convexity of ®. Integrating this inequality on X, we have

1 oo Me(a—m) —m®(a— M)
- /X B — F(1)dp(t) < o
(o —m) —
- v / it du

2.5)
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Similarly, we also obtain

1

MO —m) —mdP(8— M)
R§1£¢W—fwwwﬂ§

M —m
P(B—m)—2(B-M) 1

From (2.5) and (2.6), we deduce

gy p— ¢w—f@MMﬂ+uUlﬂ%yé¢w—f@MMﬂS

u(H)M(e) + p(J)M(B),
where M is as in (2.2). This completes the proof of Theorem 2.1. d
Remark 2.2. Let X = [a,b] C R be a nontrivial interval, « = f(a), 5 = f(b),
I=[;2, 21,7 =%, ;2] for z € [a,b] and du(z) = dz. Then, from the
inequalities in (2.7) we get inequality (1.5).
Let « = B = 0, in the following, we have an immediate consequence of
Theorem 2.1.

Corollary 2.3. Let (X, F,u) be a finite measure space with X compact. If
f: X — R is a continuous function which is not a constant and ® : R — R is
convex, then

1 1
v (o [ r0m0) < o [ eu@ane
< M®(m) — m®(M) L O(M) — d(m) 1

- M—m M—m .,u(X

)dp(t),
- [ sauto

(2.7)
where

m = {Iél)l{lf(t) and M = Itrgg(f(t)

Remark 2.4. Let X = [a,b] C R be a nontrivial interval, f(z) = z for all
x € [a,b] and du(z) = dz. Then the inequalities in (2.7) become the well-known
Hermite-Hadamard inequality for the real-valued convex function ® defined on
[a, b] as follows:

3 Applications to fractional integrals

This section is devoted to present some applications of the results in the Corol-
lary 2.3 to fractional integrals. To this end, we first recall some necessary
notions on fractional integrals in the following definitions.
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Definition 3.1 (see [7]). Let @« € (n,n+ 1] with n € N and = € (a,b).
The left- and right-side Riemann-Liouville fractional integrals of order « of a
function f are given by

x b
Tef@) = g [ @0 0de awd g @) = s [t

respectively, where T'(+) is the Euler’s gamma function defined by

F(x)z/ t*~le~tdt.
0

Definition 3.2 (see [7]). Let a € (n,n+ 1] with n € N and x € (a,b). The
left- and right-side Hadamard fractional integrals of order « of a function f are

ghven by o 1 [T ayeLf(D)
a+f(x)_m/a (m?) St

and

H f(x) = ﬁ Ab (hlé)a_l@dt.

A generalization of the two kinds of fractional integrals above is the Katugam-

pola fractional integral stated as follows.

Definition 3.3 ([11]). Let [a,b] C R be a finite interval. Then, the left- and
right-side Katugampola fractional integrals of order o > 0 of f € XP(a,b) are
defined by

11—« x p—1
I fw) = s | e e

and

e - pl—oz b tp—1
@) = b | s S

with a < x < b and p > 0, if the integrals exist.

Note that the integrals in Definition 3.3 exist whenever f belongs to the
space XP(a,b). Here, the space XP(a,b) consist of complex-valued Lebesgue
measurable functions f defined on [a, b] for which || f|| y» < oo, where ¢ € R, 1 <
p < oo and

1/p
(S ep@pe) ™ i1 < p < oo,
7l = ess sup [t°f(t)| if p= 0.
a<t<b
A close relationship between the Katugampola fractional integrals with Riemann-
Liouville and Hadamard fractional integrals is given in the following theorem.
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Theorem 3.4 ([11]). Let a > 0 and p > 0. Then, we have the following
assertions, for x > a,

(i) lim I3 f (@) = J2, fa),
(ii) lim 12, f(z) = H2, f(2).
p—07F
Similar results also hold for the right-side operators.

Finally, we recall the definition of conformable fractional integrals intro-
duced by Khalil et al.[12] and then developed by T. Abdeljawad [2].

Definition 3.5 ([2]). Let a € (n,n+ 1] and § = o« — n. The left (right)
conformable fractional integrals of order « starting at a (respectively, b) are
defined by

x

125(e) = I (@ -0 ) = o [ a0 - 0P 0d ()

a

and by

1 b
W f(2) = TG — 2)P 1 f) = — / (t— )b — 0P . (3.2)

T onl

3.1 Jensen type inequalities via fractional integrals

Theorem 3.6. Let & : R — R be a continuously conver function. Let f :
[a,b] C [0,00) — R be a continuous function satisfying f € XP(a,b). Then, the
following Jensen-type inequalities via Katugampola fractional integrals hold:

()]
(i) If z € (a,b] and a > 0, then

(et

pTla+1),
(zr —ar)>

I;"+f(x)> < o B(f(z)).

(ii) If z € [a,b) and « > 0, then

o (G ) < T e,

Proof. By taking X = [a,z] with 0 <a < 2z <b and
pl—atp—l

T(a) (7 —aryi—a ™

dp(t) =



NGUYEN NGcoc HUE 151

for any « > 0, it is easy to calculate that

T T pl—atp—l

X)= [ du(t)= dt

O R A

1 /r —1 a—1
= — ptP = (tP —aP dt =
p*L (@) Ja ( )

Substitute these quantities for the left inequality in Corollary 2.3, we obtain
o Tl+1), Pt 1),

(@ —ar)e (o7 —ar)e

(@ — ar)e
peT(a+1)

I;"+f(x)> < o B(f(z)).

Similarly, by taking X = [x,b] with 0 < a < 2 < b and
pl—atp—l

@~

du(t) = ¢

for any « > 0, it is easy to calculate that

b b l—app—1
n(x) = [autn) = [ gt

1 /b 4 -

= pt? (b — 17)7 Nt =
p*L(a) J,

Replace these quantities in the left inequality of Corollary 2.3, we get

v (%”ﬁf <x>> = %”Iﬁ-@(ﬂx»

(¥ — a0
peT(a+1)

which finishes the proof. U
An immediate consequence of Theorem 3.6 is as follows.

Corollary 3.7. Under the hypotheses of Theorem 3.6, we have

® ( Ll (P13 f(a) +° 13+f(b)]> < S

S < S a2 @) I 20

Remark 3.8. (i) Letting p — 1 in Theorem 3.6 and Corollary 3.7 and using The-
orem 3.4, we obtain [1, Theorems 3.1 and 3.3] for Riemann-Liouville fractional
integrals of order a > 0.

(ii) Taking the limit p — 0% in Theorem 3.6 and Corollary 3.7, we obtain
the Jensen type inequalities for Hadamard fractional integrals of order o > 0 of
the continuous function f defined on [a, b] C (0, 00) and the convex continuous
functions ® : R — R as follows.

o If z € (a,b] C (0,00) and o > 0, then

@((NQ+U

« [la+1)
Inz —Ina)® Ha+f(x)> =

Zﬂ;;jjfﬁ;a;;ff3+¢(f($))
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o If z € [a,b) C (0,00) and o > 0, then

P(a+1) o P(a+1) N
Q(HEFZHBEH“ﬂ@>ngngggﬂw¢0@»

e If (a,b) C (0,00) and « > 0, then

(st et ) + 2100 ) <

TNla+1)

S 2nb—Tnaye o ®U(@) + HE 2(F0))].

Theorem 3.9. Let ® : R — R be a continuously convezr function and f :
[a,b] C [0,00) — R be a continuous function. Let o € (n,n+ 1] withn € N
and B = n — «. Then, the following Jensen-type inequalities for conformable
fractional integrals of order o of f hold:
(i) If x € (a,b], then
Ia+1) Ia+1)
(= 19(2)) € = TOD(f(z)).
(F@G a5 1) = T —ae e 20
(ii) If © € [a,b), then
(0D o)) < LOD ). 3
L) — )’ T(3)(b — )

Proof. First, we take the space X = [a,z] with a < z < b and the measure

(x—t)"(t—a)’!

du(t) = N dt.
Then, we have
p0) = o [ =0 -0
=L [0 - ¢ a0 ar

a

_\nt8 CaNn ot — g B
el () K ) M
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Thus, the variable substitution A = £=% yields

z—a)"t0 [t
(X)) = %/0 N1 Z )

—_ g)nt8
o = RN
n!

(x —a)"P T(B)(n+1)

n! I'n+pB8+1)
(z — a)*T(B)

Ma+1)

where B(+, ) is the beta function. Replace these quantities in the left inequality
of Corollary 2.3, we get

Tt 1
(I)(F(ﬁ)(x—a)o‘n!/a( H"(t =)’ f(t)dt)
_Tlet+1) 1
— I(B)(x —a)>n!

or equivalently,

[ w=tr- o e,

Ia+1) Ia+1)
o(—2T T op(z)) € —— T 109(f(x)).
() =o' 1) < T —age s P
To prove the other inequality, we choose the space X = [z,b] witha <z < b

and the measure o1
t—xz)"(b—a)’
(= =20 =0)

n

The result is directly deduced from some simple calculations which are similar

to the previous proof of the theorem. Hence, we have finished the proof. [
Corollary 3.10. Under the hypotheses of Theorem 3.9, we have

(g ag L0+ F @) € et s R0 10/ o)
(3.5)

(B)(b —a)*
Remark 3.11. When « € (0, 1], that is, we take n = 0 in Theorem 3.9, then
the following assertions hold for all continuously convex functions ® : R — R
and all continuous functions f : [a,b] C R — R.

(i) If z € (a,b], then

dt.

@(ﬁﬁ: (x)) < G ey,

(ii) If z € [a,b), then
a

(I)(mbf"f(x)) < m
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3.2 Hermite-Hadamard type inequalities via fractional in-
tegrals

The following theorem was established in [7, Theorem 2.1]. However, we
again propose it here by the different way.

Theorem 3.12. If® : [a”,b”] C R — R is a continuously convex function such
that ® € XP(a?,bP), the Hermite-Hadamard type inequalities for the Katugam-
pola fractional integrals of order a > 0 of ® holds

a? + b? P*T(a+1)
< pro pY 4P o P\ < )
( 2 ) < 20—y | Lar @) A7 I @(a”)] < 2

Proof. By taking X = [a,b] with 0 < a < b, f(t) = t” for all ¢t € [a, b] and the

measure
l1—aypp—1
_p ot 1 1
i)~ i (== + =)

O(a?) + D(b°)

it is easy to see that

[ i P =
a tg[l;g]f(t), b tgl[gfg}f(t)

and

1—a b «
p ) 1 | b — a”)
X) = tP dt =
10 =y [ (i ) = ey
1

[ s = £ / e ((bﬂ et 1)) o
(@ )P — ar)°

p°T(a+1)

By replacing these quantities in Corollary 2.3, we obtain the desired result, the
details are omitted. O

The following result on the Hermite-Hadamard type inequality for con-
formable fractional integrals was proposed by Anderson [5] (see also [13]), but
under the hypothesis which the conformable fractional derivative of the func-
tion increases. We relax this hypothesis in the following.

Theorem 3.13. If ® : [a,b] C R — R is a convex function, the Hermite-
Hadamard type inequality for conformable fractional integrals of order oo > 0
of ® holds

a+b N(a+1)
o(*5-) < 206 —a)°T(B)
SO 1)

(15 @(b) + 1% ®(a)]
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Proof. First, we take X = [a, b] a nontrivial interval of R, the function f(t) =t
for all t € [a, b] and the measure

du(t) = %(b _ 0t — )L,

From the proof of Theorem 3.9, it is easy to see that

(b 0)°T(8)

HX) =T

On the other hand, we have
b
[ = adut) = [(0-a) -t~ e
X n:Ja

(b—a)””“/b t—a\n/t—a\B dt
= - 1—
n! o ( b—a) (b—a) b—a
_ a+1 1
_b-a /(1—)\)”)\%)\
0

n!
- (b_nﬁB(n—F 1,3+1)
(b—a)*™ T(n+1)I(B+1)
n! I'n+B8+2)
(b—a)*TT(B+1)
I(a+2) ’

where we have used the change of variable A\ = £=2. A combination of (3.6)

b—a
and (3.7) gives

[ tauy = [ ¢ =aduty+a [ duto

_G-atTE Y | (-0 T()
Ta+2) Tla+1)
_ (b—a)*T(B) (B(b—a)
= Tt (ot +9)
(b—a)*T(B) b+ (n+1)a
Ia+1) a+1

This, together with (3.6), leads to

T;) /X tpu(t) = W. (3.8)
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Replacing du(t) and (3.8) in (2.7), we get

Bb+ (n+1)a Ma+1)
o(— )S(b—@qwﬂ5¢®)

3.9
- b®(a) — a®(b) N ®(b) — P(a) fb+ (n+ 1)a (3.9)
- b—a b—a a+1 '
An argument exactly like the previous one for the measure
1
du(t) = ﬁ(t —a)"(b—t)?tdt
gives us the following estimates
(n+1)b+ Ba Nla+1)
P < 1°®(a
( a+1 ) (b—a)T(B)" (a) (3.10)
- b®(a) — a®(b) N ®(b) — ®(a) (n+ 1)b+ Sa
- b—a b—a a+1 '
From (3.9), (3.10) and the convexity of ®, we infer
(I)(a+b) B ¢(15b+(n+1)a 1(n+1)b+6a)
2/ \2  a+l 2 a+1
1 _/B8b+(n+1a 1_/(n+1)b+ Ba
< (=" 7 )Y RS e el
_2(I)< a+1 )+2(I)( a+1 )
I(a+1)
— ][] 1P
< S e 120 + 1170
bP(a) —a®(b) @) —P(a)a+b
< +
- b—a b—a 2
_ ®(a) + ()
D —
which are the desired results. O

Remark 3.14. Under the hypotheses of Theorem 3.13 and « € (0, 1], we have

@(a ;_ b) = 2(b ié e 15 @(D) + oI ®(a)]

_ 2a)+ ()
- 2

References

[1] S. Abbaszadeh, A. Ebadian, M. Jaddi, Jensen type inequalities and their
applications via fractional integrals, Rocky Mountain J. Math. 48 (8)
(2018), 2459-2488.



NGUYEN NGcoc HUE 157

[2] T. Abdeljawad, On conformable fractional calculus, J. Comput. Appl.
Math. 279 (2015), 57-66.

[3] A. A. Aljinovic, Montgomery identity and Ostrowski type inequalities for
Riemann-Liouville fractional integral, J. Math. 2014, Art. ID 503195, 6
Pp-

[4] A. A. Aljinovic, M. Krnié¢, J. Pecari¢, Weighted Montgomery identity
for the fractional integral of a function with respect to another function,
Georgian Math. J. 21(1) (2014), 1-10.

[5] D. Anderson, Taylor’s formula and integral inequalities for conformable
fractional derivatives, Contributions in mathematics and engineering, 25-
43, Springer, 2016.

[6] S. Asliylice, A. F. Giivenilir, Fractional Jensen’s inequality, Palest. J.
Math., 7(2) (2018), 554-558.

[7] H. Chen, U. N. Katugampola, Hermite-Hadamard and Hermite-
Hadamard-Fejér type inequalities for gemeralized fractional integrals, J.
Math. Anal. Appl., 446(2) (2017), 1274-1291.

[8] S. S. Dragomir, A functional generalization of Ostrowski inequality via
Montgomery identity, Acta Math. Univ. Comenian, 84(1) (2015), 63-78.

[9] S. S. Dragomir, A functional generalization of trapezoid inequality, Viet-
nam J. Math. 43(4) (2015), 663-675.

[10] K.-C. Hsu, S.-R. Hwang, K.-L. Tseng, Some extended Simpson-type in-
equalities and applications, Bull. Iranian Math. Soc., 43(2) (2017), 409-
425.

[11] U. N. Katugampola, New approach to generalized fractional derivatives,
Bull. Math. Anal. Appl., 6(4) (2014), 1-15.

[12] R. Khalil, M. A. Horani, A. Yousef, M. Sababheh, A new definition of
fractional derivative, J. Comput. Appl. Math., 264 (2014), 65-70.

[13] M. A. Khan, T. Ali, S. S. Dragomir, M. Z. Sarikaya, Hermite- Hadamard
type inequalities for conformable fractional integrals, Rev. R. Acad. Cienc.
Exactas Fis, Nat. Ser. A Mat. RACSAM, 112(4) (2018), 1033-1048.

[14] W. Liu, Ostrowski type fractional integral inequalities for MT-convex
functions, Miskolc Math. Notes, 16(1) (2015), 249-256.

[15] J. E. Pecarié¢, On the éebys“ev inequality, Bul. Stiint. Tehn. Inst. Politehn.
”Traian Vuia” Timisoara 25, 39(1) (1980), 5-9.

[16] M. Z. Sarikaya, H. Budak, Generalized Ostrowski type inequalities for
local fractional integrals, Proc. Amer. Math. Soc., 145(4)(2017), 1527-
1538.



