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Abstract

Quadratic maps of a specific type, defined on finite fields of charac-
teristic two, are studied in terms of conjugacy maps, tree structures, and
periodic points. In terms of conjugacy, it is found that conjugate field
elements yield conjugate maps. Convenient bases for the sets of nilpotent
and periodic points are determined separately. From these bases, various
previous results are obtained with little reliance on matrix-based meth-
ods, allowing more efficient methods to be implemented as they arise.

1 Introduction

Some theoretical phenomena can be seen as dynamical systems defined over
finite sets, possibly endowed with some algebraic structure. For example, the
Lucas-Lehmer test for Mersenne primes can be viewed as the map x �→ x2 − 2
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over a finite ring of interest [9]. In this light, investigation of such systems leads
to an insight of the phenomena in question.

Quadratic maps over fields of characteristic different from 2 are polynomials
of low degree, yet they exhibit interesting dynamical properties, especially in
terms of periodicity. Non-periodic trees and periodic cycles behave irregularly,
as indicated in [14]. Over finite fields of characteristic greater than 2, only two
maps, namely x �→ x2 and x �→ x2 − 2, are exceptions to such irregularities.

The squaring map x �→ x2 on finite fields Fp, for p prime, was studied in
several works, such as [1], [12], [14], and [16]. It is shown in [1] that primitive
roots form long orbits. More concretely, if p = 2ωq +1 and g is a primitive root
of p, then g is a source, and its orbit contains a long periodic cycle. The number
of periodic cycles is given by [14], using a few number-theoretic conjectures,
such as Artin’s Conjecture on Primitive Roots.

The map x �→ x2 − 2 was also studied as well. Small examples computed
by Kravitz in [9] pointed out the map’s regularity, at least for a few Mersenne
primes. In that article, it is indicated that if p = 2k − 1 is a Mersenne prime,
then the periodic cycle lengths are divisors of k. A solid and general proof is
given in [6], which shows that its cycles and trees are adequately uniform, and
that the number of periodic and non-periodic points can be found systemati-
cally.

Description of periodic cycles remain an open question, except in some
cases, such as linear transformations on arbitrary finite fields and quadratic
maps. As proved in [7], the cycle structure of a linear transformation can be
found from its minimal polynomial, and that the maximal cycle length is the
order of that polynomial. For general quadratic maps, upper bounds are given
in [13], which shows that cycle lengths cannot exceed 0.375 of the field size plus
a small number.

Inspired by the mentioned studies, quadratic maps of the form x �→ x2 + bx
defined over finite fields Fq, for q = 2N , are investigated using only elemen-
tary principles. This article shows that, compared to quadratic maps over other
fields, the maps over finite fields of characteristic 2 behave uniformly and consis-
tently, allowing their basic dynamical properties to be deduced. Furthermore,
our methods will rely less on matrices and more on bases.

Besides from the introduction and conclusion, this article is divided into
four sections, namely Preliminary Results, Tree Structure, Periodic Cycles, and
Conjugate Maps, covering basic descriptions of maps of the form x �→ x2 + bx
defined over finite fields of characteristic 2. Preliminary Results establishes
a formula for iterations of such maps, as well as one for finding pre-images
of any given point x ∈ Fq . Tree Structure describes how non-periodic points
can be found via an algebraic basis. Periodic Cycles uses the information
on non-periodic points to deduce periodic points and cycle lengths, and a
parametrization of cycles of period 3. Finally, Conjugate Maps shows how
field automorphisms may act as conjugacies between two maps x �→ x2 + bx
and x �→ x2 + cx.
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To begin with, some definitions are provided here. The symbol Fq always
denotes a fixed finite field of size q = 2N , where N is a positive integer.

2 Preliminary Results

A quadratic map is one defined by a quadratic polynomial f (x) = ax2 + bx+ c
on Fq , where a, b, c ∈ Fq are constants. It can be shown via Hilbert’s Theorem
90 that an arbitrary quadratic map x �→ ax2 + bx + c is conjugate to either
x �→ x2 + bx or x �→ x2 + bx +

(
b2 + 1

)
ζ, where ζ ∈ Fq is a fixed element with

absolute trace 1. In this study, maps of the first type are investigated.
In this section, a few simple formulas for the map x �→ x2 + bx are proved

in Lemmas 2.1 and 2.2. They concern with iterations and the least periods of
periodic points. Also, auxiliary formulas for solving fb (x) = y, given y ∈ Fq ,
are provided in Lemmas 2.3 and 2.4.

Henceforth, unless stated to the contrary, some notations are fixed as fol-
lows. N and q denote a fixed positive integer and the number 2N , respectively.
Also, for each b ∈ Fq , fb : Fq → Fq is the function given by fb (x) = x2 + bx
for each x ∈ Fq . For any positive integer n, fn

b refers to the n-th iteration of
f , i.e., the composition of fb with itself n times. In addition, f0 is taken to be
the identity map on Fq.

The first lemma asserts that fb is a linear map, and it relates the iterations
of any two points x, y ∈ Fq and the iteration of their sum. The proof is a routine
argument by induction on the number of iterations, so it will be skipped. The
second one is a special case, where only periodic points are considered.

Lemma 2.1. Fix a b ∈ Fq. Then for each n ∈ N and x, y ∈ Fq,

fn
b (x + y) = fn

b (x) + fn
b (y) . (2.1)

Lemma 2.2. Fix a b ∈ Fq. If x, y ∈ Fq are periodic points of fb and x �= y, so
is x + y, with a period equal to the least common multiple of x and y.

Proof. Only the second statement needs to be proved, for the first immediately
follows. Let x, y ∈ Fq be periodic points of fb, and call m and n the least period
of x and y, respectively. Set l to be the least common multiple of m and n. By
periodicity of x and y, fm

b (x) = x and fn
b (y) = y.

Since l is a common multiple of m and n, it follows that f l
b (x) = x and f l

b (y) =
y. Lemma 2.1 implies

f l
b (x + y) = x + y.

Thus, x + y is also a periodic point, with period l. �

Lemma 2.2 states that the set of periodic points is closed under addition.
A consequence of this observation is that it forms a group and, by Lagrange’s
Theorem, the number of periodic points must be a power of 2. A slightly more
insightful proof is provided later.
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Given y ∈ Fq, the existence of solutions of the equation fb (x) = y depends
on the trace of a related element of the field. The definition of the trace to
be used is borrowed from Lidl and Niederreiter [11], but only a special case is
needed here. For a fixed α ∈ F = Fq , its trace (or absolute trace) is the sum of
all its Galois conjugates; that is,

Tr (α) = α + α2 + α4 + . . . + α2N−1
. (2.2)

As Fq has characteristic 2, the trace can assume only two values, namely 0 and
1.

Later sections require solving equations of the form fb (x) = y for x, given
y ∈ Fq. If b = 0, a unique solution always exists. If b = 1, the next lemma
furnishes a sufficient condition and an explicit formula for x.

Lemma 2.3. [2] Let δ ∈ Fq, and Tr (δ) = 0. Then the equation x2 + x = δ
has the explicit root

x = 1 +
N−1∑
j=1

δ2j

(
j−1∑
k=0

u2k

)
, (2.3)

where u ∈ Fq and Tr (u) = 1. The other root is x + 1.

If b is neither 0 nor 1, then a change of variables can be done so that Lemma
2.3 is applicable. Given a fixed ζ ∈ Fq , the equation t2 + bt = ζ can be solved
for t by setting t = bx, yielding

b2x2 + b2x = ζ

x2 + x =
ζ

b−2
.

The last equation can be solved for x, and hence t, using Lemma 2.3 if its
hypothesis is fulfilled; i.e., the trace of ζb−2 is 0.

The condition Tr (δ) = 0 is not only sufficient, but also necessary, as the
next lemma indicates. Again, only the case where K = F2 is of particular
interest.

Lemma 2.4. [11] Let F be a finite extension of K = Fq. Then for α ∈ F we
have TrF/K (δ) = 0 if and only if δ = βq − β for some β ∈ F .

3 Main Results

3.1 Tree Structure

Since fb is a linear transformation, Fitting’s lemma indicates the simplest struc-
ture for the set of non-periodic points of fb. It is composed of trees, all of which
are isomorphic in the graph-theoretic sense. When Fq is viewed as a vector
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space, as required by that lemma, the set of nilpotent points of fb is known to
be a subspace. A basis for that subspace can be constructed in a natural way
without much need for a preexisting one.

Recall that Fitting’s lemma states that if f : M → M is a module endo-
morphism, and M is both Artinian and Noetherian, then it can be decomposed
into a certain direct sum. Its formal statement is stated here so that it can be
used later.

Following Lang [10], the submodules Im u∞ and Ker u∞ are defined by
stationarity of the chains

Ker u ⊂ Ker u2 ⊂ Ker u3 ⊂ . . .

and

Im u ⊃ Im u2 ⊃ Im u3 ⊃ . . . ,

respectively. There exists a sufficiently large n such that Im un = Im un+1

and Ker un = Ker un+1. Define Im u∞ (respectively Ker u∞) to be Im un

(respectively Ker un).

Lemma 3.1 (Fitting’s Lemma). [10] Assume that the module M is Noethe-
rian and Artinian. Let u be an endomorphism in M . Then M has a direct
sum decomposition

M = Im u∞ ⊕Ker u∞. (3.1)

Furthermore, the restriction of u to Im u∞ is an automorphism, and the re-
striction of u to Ker u∞ is nilpotent; i.e., there exists an n such that un (x) = 0
for all x ∈ Ker u∞.

The finite field Fq can be viewed as a vector space over the field F2 of
dimension N , and hence a module. The fact that it is Noetherian and Artinian
should be obvious; it is a finite set. Lemma 2.1 shows that fb : Fq → Fq is
indeed a module endomorphism, so Fitting’s lemma can be applied, yielding
the following observation, which a majority of results are based on.

Theorem 3.2. Let b ∈ Fq be fixed. Then there exist subspaces K and P of Fq

such that
Fq = K ⊕ P . (3.2)

The subspaces K and P are the sets of nilpotent and periodic points, respec-
tively. In other words,

K = {x ∈ Fq | fn
b (x) = 0 for some n} ,

P = {x ∈ Fq | x is a periodic point of fb} .
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Proof. By applying Fitting’s lemma to fb, Fq can be written as a direct sum

Fq = Ker f∞
b ⊕ Im f∞

b .

Set K = Ker f∞
b and P = Im f∞

b . By definition of K, there exists an n such
that fn

b (x) = 0 for all x ∈ K.
According to Fitting’s lemma, the restriction of fb to P is an automorphism,

and hence a bijective map. Pick any x ∈ P and consider the orbit of x, namely

O (x) =
{
x, fb (x) , f2

b (x) , . . .
}

.

By the pigeonhole principle, the list must repeat after some m iterations. If
fm

b (x) = f i
b (x) for some i between 0 and m, then, by taking inverse of fb for

i times, x = fm−i
b (x). That is, x is a periodic point of fb. Conversely, if x

is periodic, then for some positive integer m, x = fn
b (x) = fn

b

(
fm−n

b (x)
)
. It

follows that x ∈ P . �

For each periodic point p of fb, define Vp to be the set of points x ∈ Fq

such that fn
b (x) = p for some n, and that no prior iteration of x is periodic,

that is, fk
b (x) is not periodic for any k = 0, 1, 2, . . . , n − 1. The next lemma

establishes a bijection between V0 and Vp for any periodic point p, and that
bijection preserves successive iterations.

Before proceeding, notice fb (0) = 02 + b (0) = 0, so 0 is a fixed, hence
periodic, point of fb. Also note that fb (b) = b2 + b (b) = 0, so V0 is well-
defined and nonempty unless b = 0. The following observation is an immediate
consequence of Theorem 3.2 and the definition of V0.

Corollary 3.3. Suppose that b ∈ Fq \ {0}. Let K be as in Theorem 3.2. Then
K = V0 ∪ {0}.
Lemma 3.4. Suppose that b �= 0. Let p be any periodic point, and Vp be defined
as above. Then there exists a map φ : Vp → V0 such that

1. φ is bijective;

2. if x, y ∈ V0 such that y = fb (x), then φ (y) = fb (φ (x)).

Proof. Let p be any periodic point of fb, and consider the set V0. From The-
orem 3.2,

Fq = K ⊕ P , (3.3)

where K = V0 ∪ {0} by Corollary 3.3, and P is the set of periodic points of fb.
To construct φ, let x ∈ Fq be arbitrary. Then x can be expressed as a

unique sum
x = ẋ + x̃,

where ẋ ∈ K and x̃ ∈ P . Define φ : Vp → V0 by

φ (x) = ẋ.
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Due to the uniqueness of the sum, the map is well-defined and injective.
To see that φ is surjective, let y ∈ V0 be arbitrary. By construction, there

exists n3 such that fn3
b (y) = 0 and f l

b (y) is non-periodic for l = 0, 1, 2, . . . , n3−
1. Since p is periodic, there exists a periodic point p̃ such that fn3

b (p̃) = p.
Choose x0 = y + p̃. It can be seen that y ∈ ker fn

b and p̃ ∈ im fn
b , so there is

only one such x0. It follows that φ (x0) = y.
It remains to show that the chosen x0 is indeed in Vp. Note that for each

k ∈ {0, 1, 2, . . . , n3 − 1},
fk

b (x0) = fk
b (y) + fk

b (p̃) .

For these values of k, it is impossible for fk
b (y) to be zero, and consequently

fk
b (x0) cannot be periodic. Also consider

fn3
b (x0) = fn3

b (y) + fn3
b (p̃) = fn3

b (p̃) = p.

By construction, x0 ∈ Vp. It follows that the map φ is surjective, and hence
bijective.

Finally, to see that φ preserves successive iterations, take any s, t of Vp

and suppose that t = fb (s). We need to show that φ (t) = fb (φ (s)). Write
s = ṡ + s̃ and t = ṫ + t̃ for some uniquely determined ṡ, ṫ ∈ K and s̃, t̃ ∈ P .
Then

ṫ + t̃ = fb (ṡ) + fb (s̃) .

Since ṡ ∈ K, fb (ṡ) ∈ K as well. Similarly, s̃ ∈ P implies fb (s̃) ∈ P . By
uniqueness of the sum, ṫ = fb (ṡ). By construction, φ (t) = ṫ. It follows that

φ (t) = ṫ = fb (φ (s)) .

Therefore, the second assertion is proved, and the proof is complete. �

From Lemma 3.4, the problem of studying Vp for each p is reduced to
determining V0. It is somewhat easier to study the related set K as the latter
is a vector subspace. It must possess a basis if b /∈ {0, 1}. A natural basis
for K is built in the next lemma. In it, a source is a point x ∈ Fq without a
pre-image under fb.

Lemma 3.5. Suppose that b ∈ Fq \ {0, 1}. Let K be as in Theorem 3.2. Then

BK =
{
x0, fb (x0) , f2

b (x0) , . . . , fh−1
b (x0)

}
forms a basis of K, where x0 is a source, and h is the least positive integer
such that fh

b (x0) = 0.

Proof. Suppose that b ∈ Fq \ {0, 1}. Consider the map fb and let K be as
in the theorem. Let b1 = b. For each i = 2, 3, 4, . . ., if bi−1 has at least one
pre-image under fb, let that be bi. So, fb (bi) = bi−1. Note that the process
must terminate after finitely many steps due to finiteness of K. Choose x0 to
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be the last bi found from the process. The fact that x0 is a source follows by
design.

Suppose that h is the least positive integer satisfying fh
b (x0) = 0. Let

BK =
{
x0, fb (x0) , f2

b (x0) , . . . , fh−1
b (x0)

}
.

The goal is to show that BK is linearly independent, and that its span is the
whole K. Suppose that

α0x0 + α1fb (x0) + α2f
2
b (x0) + . . . + αh−1f

h−1
b (x0) = 0

for some α0, α1, α2, . . . , αh−1 in F2. Taking fh−i
b , i = 1, 2, 3, . . . , h − 1 on both

sides, we successively obtain α0f
h−i
b (x0) = 0 for i = 1, 2, 3, . . . , h − 1. Since

fh−1
b (x0) = b �= 0, it follows that αi = 0. Hence, BK is a linearly independent

set.
To show that BK spans K, suppose that there exists a y ∈ K not in the

span of BK . Since y ∈ K, fn
b (y) = 0 for some n. Since 0 is in the span,

there must be a positive integer n′ such that z = fn′
b (y) ∈ Span BK but

z′ = fn′−1
b (y) /∈ Span BK . Now, z ∈ Span BK implies

z = β0x0 + β1fb (x0) + β2f
2
b (x0) + . . . + βh−1f

h−1
b (x0) .

Substituting z = fn′
b (y) yields,

fn′
b (y) = β0x0 + β1fb (x0) + . . . + βh−1f

h−1
b (x0) .

It follows that βn′ = 1 and βi = 0 for all i < n′ from linear independence.
There are two cases to consider, namely when n′ = 0 and n′ > 0. It will be
shown that neither case is possible.

Suppose that n′ > 0. Then β0 = 0. Either

z′ = β1x0 + β2fb (x0) + . . . + βh−1f
h−2
b (x0)

or
z′ = β1x0 + β2fb (x0) + . . . + βh−1f

h−2
b (x0) + b

must hold. Since b = fh−1
b (x0), either case means z′ ∈ Span BK , contradicting

the choice of z′.
On the other hand, suppose that n′ = 0. Then

y = β0x0 + β1fb (x0) + . . . + βh−1f
h−1
b (x0) .

Clearly, y ∈ Span BK , contradicting the choice of y.
Therefore, every y ∈ K can be written as a linear combination of elements

in BK , and BK is a basis of K. �



78 Linear Maps Given by Quadratic Polynomials

From the lemma and its proof, one can construct a basis for K by finding
successive pre-images of 0 under fb until a source is reached. It is reminded
that pre-images of any given x ∈ K are exactly the solutions of

t2 + bt = x,

the solution of which is given by

t = b + b

N−1∑
j=1

x2j

(
j−1∑
k=0

u2k

)
,

where u ∈ Fq is a fixed element with trace 1.
Since K is a vector subspace of Fq , and its basis has exactly h elements,

and coefficients in any linear combination of elements from that basis has only
two choices, it is evident that there are exactly 2h nilpotent points.

An inspection of the basis so constructed reveals that V0 has a simple shape;
it is a perfect binary tree. This stems from the fact that every nilpotent point
of fb has precisely two pre-images if one exists.

Proposition 3.6. Suppose that b ∈ Fq \ {0, 1}. Let x, y ∈ V0, and suppose
that there exists a positive integer l such that f l

b (x) = f l
b (y) = b. Then x is a

source if and only if y is a source.

Proof. Let x, y ∈ V0 and suppose that the l-th iterates of x and y are both
equal to b. Assume that x is a source but y is not. Due to symmetry, only one
implication is proved.

Let K be as in Theorem 3.2, and h be the dimension of K as in Lemma 3.5.
Since x is a source, x and its successive iterations fb (x) , f2

b (x) , f3
b (x) , . . . , fh−1

b (x)
form a basis B for K. Write

y = α0x + α1fb (x) + α2f
2
b (x) + . . . + αh−1f

h−1
b (x) . (3.4)

Recall that fh−1
b (x) = b. By taking f l

b on both sides of (3.4),

b = f l
b (y) = α0b.

Since b �= 0, it follows that α0 = 1.
If, on the contrary, fb (t) = y for some t ∈ Fq , then t ∈ V0. Write

t = β0x + β1fb (x) + β2f
2
b (x) + . . . + βh−1f

h−1
b (x) .

Taking fb on both sides,

y = β0fb (x) + β1f
2
b (x) + β2f

3
b (x) + . . . + βh−2f

h−1
b (x) . (3.5)

Equating (3.4) and (3.5) gives α0 = 0, which is absurd. Therefore, y is also a
source. �

The proof of Proposition 3.6 can be imitated to reveal another phenomenon.
The sum of two points in V0 is a source when one is a source and the other is
not.
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Proposition 3.7. Suppose that b ∈ Fq {0, 1}. Let x, y ∈ V0 and suppose that
x is a source. Then x + y is a source if and only if y is not a source.

Proof. Let x, y ∈ V0 be given and suppose that x is a source. Assume further
that y is a source.

Just as in the proof of Lemma 3.5, build a basis B out of iterates of x.
Write

y = α0x + α1fb (x) + α2f
2
b (x) + . . . + αh−1f

h−1
b (x) . (3.6)

It is already seen in the previous proof that α0 = 1. It must be the case that

x + y = α1fb (x) + α2f
2
b (x) + . . . + αh−1f

h−1
b (x)

= fb

(
α1x + α2fb (x) + . . . + αh−1f

h−2
b (x)

)
.

Thus, x + y has a pre-image, namely z. Therefore, x + y is not a source.
Assume instead that y is not a source. Write

y = β0x + β1fb (x) + β2f
2
b (x) + . . . + βh−1f

h−1
b (x) . (3.7)

If β0 = 1, then taking fh−1 on both sides of (3.7) implies b = 0. This contra-
dicts the assumption that y is not a source. It follows that β0 = 0, and

x + y = x + β1fb (x) + β2f
2
b (x) + . . . + βh−1f

h−1
b (x) . (3.8)

As seen in the proof of Proposition 3.6, if x + y is not a source, then x cannot
be one, contradicting with the hypothesis. Therefore, x + y is a source. �

From Propositions 3.6 and 3.7, each x ∈ K has exactly two pre-images if
one exists, and all sources are on the same “level.” This is possible only if V0,
and hence Vp for any periodic point p, forms a perfect binary tree.

3.2 Periodic Cycles

Next, the periodic structure of fb is investigated. It is established that the set
of periodic points forms a vector subspace of Fq . It must possess a basis, of
which the construction is the final aim. It is also shown that cycles can be
categorized according to the sum of points in them.

Since periodic cycles are formed from periodic points, the number of periodic
points should be counted first. It is established that the field Fq is a direct sum
of the sets of nilpotent and periodic points, so the dimensions of both sets add
up to the degree N of the field. If h denotes the dimension of the subspace of
nilpotent points as before, then the subspace of periodic points has dimension
N − h. Therefore, there are 2N−h periodic points. It is also expected that a
basis for the subspace of periodic points has N − h elements.

By solving the equation fb (x) = x, two fixed points are obtained, namely
0 and b +1. The sum of points in a given periodic cycle can only assume these
two values. Also, for periodic cycles of odd length, if the points add up to 0,
then another cycle can be constructed to make the points add up to b + 1.
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Lemma 3.8. Let b ∈ Fq be arbitrary. Let C be a periodic cycle of fb. Then
the following hold.

1. The sum of all points in C is either 0 or b + 1.

2. If C has odd length, there exists a periodic cycle D such that D has the
same length as C, but the sum of points in D is different.

Proof. Let C be a periodic cycle of fb. Pick a point x0 ∈ C. Every x ∈ C is
clearly of the form f i

b (x0) for some nonnegative integer i less than the length
of C. Consider the sum of points in C, namely

s =
|C|−1∑
i=0

f i
b (x0) .

Then s is a fixed point of fb. To see this, consider

fb (s) =
|C|−1∑
i=0

f i+1
b (x0)

=
|C|−1∑
i=0

f i
b (x0)

= s.

Since s is a fixed point of fb, it must be either 0 or b + 1. This proves the first
assertion.

To prove the second statement, assume that C has odd length. Let y0 =
x0 + b + 1, and D be the set of iterations of y0 under fb. According to Lemma
2.2, y0 is a periodic point with least period equal to that of x0, hence |D| = |C|.
However, consider the sum of points s′ in D.

s′ =
|D|−1∑
i=0

f i
b (x0 + b + 1)

=
|C|−1∑
i=0

f i
b (x0) +

|C|−1∑
i=0

(b + 1)

= s + b + 1.

If s = 0, then s′ = b + 1, but if s = b + 1, on the other hand, then s′ = 0.
Therefore, the sum of points in D is different from that in C. This proves the
second assertion. �

Now a basis for the subspace of periodic points can be constructed. There
must be a periodic cycle whose length is the longest. If one is found, then a
periodic point can be picked from it, and its N − h iterates form such a basis.
It remains to show that the candidate basis is linearly independent, and that
every periodic point can be written as a linear combination from it.
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Theorem 3.9. Let b ∈ Fq \ {1} be given, and let C be the periodic cycle of fb

satisfying the two following conditions.

1. Its length is the greatest among all cycle lengths.

2. All points in it add up to b + 1.

Let x0 ∈ C, and let h be the dimension of the set of nilpotent points of fb.
Then

BP =
{
fk

b (x0) | k = 0, 1, 2, . . . , N − h − 1
}

is a basis for the set of periodic points of fb.

Proof. Let x0 denote such a periodic point. Let P denote the set of periodic
points of fb, and let c be the least period of x0. For convenience, let xi = f i

b (x0)
for i = 1, 2, 3, . . . , c− 1, and xc = x0. To prove the linear independence of BP ,
consider the equation

δ0x0 + δ1x1 + . . . + δN−h−1xN−h−1 = 0. (3.9)

By iterating (3.9) |C| times, these equations are obtained and added to yield

(δ0 + . . . + δN−h−1) (b + 1) = 0.

Since b �= 1, it follows that

δ0 + δ1 + . . . + δN−h−1 = 0
(δ0 + δ1 + . . . + δN−h−2)xN−h−1 = δN−h−1xN−h−1.

Set yi = x0 + xN−h−1 for i = 0, 1, . . . , N − h − 2. Substituting in (3.9) gives

δ0y0 + δ1y1 + . . . + δN−h−2 (yN−h−2) = 0. (3.10)

The above process can be performed on 3.10 to yield

(δ0 + . . . + δN−h−2) y = 0,

where y = y1+. . .+yN−h−2 . On the one hand, if N−h is odd, then y = b+1 �= 0.
On the other hand, if N − h is even, then y = xN−h−1 + b + 1 �= 0. In either
case, δ0 + . . . + δN−h−2 = 0, so δN−h−1 = 0. The whole argument can be
repeated again to obtain

δN−h−1 = δN−h−2 = δN−h−3 = . . . = δ0 = 0.

Therefore, BP is linearly independent. It is also the case that xN−h is linearly
dependent on BP , so it must be a linear combination from elements in BP as
well.
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It is clear from Lemma 2.2 that linear combinations from elements in BP

are points of period c. To see that points of smaller periods can be written as
such a linear combination as well, let d be a proper divisor of c, and consider

y = x0 + xd + x2d + . . . + xkd, (3.11)

where k is a positive integer such that (k + 1)d = c. Then y is a point of period
d because

fd
b (y) = xd + x2d + x3d + . . . + xc

= x0 + xd + x2d + . . . + xkd = y.

All iterations of x0 after N − h − 1 is a linear combination of elements in BP ,
so y is also in the span of BP as well. Therefore, BP is a basis of the set P . �

3.3 Conjugate Maps

Recall that two dynamical systems f and g are conjugate if there exists a bi-
jective map φ such that φ ◦ f ◦ φ−1 = g. The definition is taken from [8],
although it is not required here that φ be continuous. Conjugate systems
share key dynamical properties, as φ preserves iterations, orbits, and period-
icity. Conjugacy is also an equivalence relation among dynamical systems. In
this section, it will be shown that field automorphisms act as conjugacy maps
between maps within the family {fb | b ∈ Fq}. Since field automorphisms are
well-studied in the context of Galois theory, this moderately limits the number
of similar systems.

Proposition 3.10. Let b ∈ Fq. Then the maps fb and fb2 are conjugate.

Proof. Let φ : Fq → Fq be given by the Frobenius automorphism; i.e. φ (x) =
x2 for each x ∈ Fq. The map is well-known to be bijective. Let x ∈ Fq be
arbitrary. Consider

(φ ◦ fb) (x) = φ
(
x2 + bx

)
= x4 + b2x2

= (φ (x))2 + b2φ (x)
= fb2 (φ (x))
= (fb2 ◦ φ) (x) .

Therefore, fb and fb2 are conjugate. �

The following corollary is not surprising due to the fact that conjugacy is
an equivalence relation, and that the Frobenius automorphism generates all
automorphisms of the field. The latter fact is proved, for example, in [4]. In
loose terms, Galois conjugates from Fq yield maps with similar orbits. It is
stated here without proof.

Corollary 3.11. Let b ∈ Fq and σ ∈ Gal (Fq/F2). Then fb and fσ(b) are
conjugate.
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4 Conclusion and Discussion

In this article, basic descriptions of maps of the form x �→ x2 + bx are es-
tablished, in terms of successive iterations, transient states, steady states, and
conjugacy between such maps. It is seen that the maps exhibit a regularity not
found in general quadratic maps. For example, if two periodic cycles of differ-
ent lengths are found, then another one must exist, and can be calculated from
the former two. Non-periodic points also form similarly shaped trees, so the
determination of their structure can be restricted to the set of nilpotent points.
A basis for the sets of nilpotent and periodic points are also constructed, which
can be used for synthesis of the maps.

However, there is room for improvement. To synthesize the map in this
manner, iterations of a random point are required, and not determined a priori
from the parameter b. Several examples, found with the aid of Sage [15], point
out a relationship between two ideas of minimal polynomials. If b ∈ Fq is a
primitive element, then

m (x) = xhμ (x) + 1,

where h is the dimension of the set of nilpotent points of fb, m is the minimal
polynomial of b, and μ is the minimal polynomial of the restriction of fb to its
set of periodic points. If this conjecture holds, then the dynamics of fb can be
determined without using iterations of a random point, at least for primitive
b. No counterexample is found so far, except when b is not primitive.
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