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Abstract

In this article, we prove the existence and uniqueness of solutions for
the Navier problem

= f(z) — div(G(z)), in Q,

(P Afw(z) |[AulP2Au + v(z) |Au|q_2Au} — div|[w(z) |Vu|P 2V + v(z) |Vu|q_2Vu}
P
{u(z) =Au=0, in 909,

where  is a bounded open set of RY (N > 2), ! € Lp,(Q7 w) and ¢ e[L! ,(Q, )Y
w v

1 Introduction

The main purpose of this paper (see Theorem 3.2) is to establish the existence
and uniqueness of solutions for the Navier problem

Lu(z) = f(z) — div(G(x)), in Q,
(P) { u(z) = Au(z) =0, in 99,
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where

Lu(z) = Alw(z) |Au|P72 Au + v(z) |Au|q_2Au} — div[w(r)|Vu|p_2Vu +v(x) |Vu|q_2Vu)}7

’ G ’
QCRY is a bounded open set, geL” (Q,w), —€ [L9(Q, )]V, w and v are

two weight functions (i.e., w and v are locally integrable functions on RY such
that 0 < w(z) < oo and 0 < v(r) < oo a.e. x€RY), A is the Laplacian
operator, l <g<p<oo,1/p+1/p’=1land 1/q+1/q’' = 1.

For degenerate partial differential equations, i.e., equations with various
types of singularities in the coefficients, it is natural to look for solutions in
weighted Sobolev spaces (see [1], [4], [5], [7], [8] and [11]). The type of a weight
depends on the equation type.

A class of weights, which is particularly well understood, is the class of A,
weights that was introduced by B.Muckenhoupt in the early 1970’s (see [8]).
These classes have found many useful applications in harmonic analysis (see [9]
and 10]). Another reason for studying A,-weights is the fact that powers of the
distance to submanifolds of RY often belong to A, (see [3] and [11]). There are,
in fact, many interesting examples of weights (see [7] for p-admissible weights).

In the non-degenerate case (i.e. with w(z) = 1), for all fe€ LP(Q) the
Poisson equation associated with the Dirichlet problem

—Au = f(z), in Q
u(xz) =0, in 00

is uniquely solvable in W2?(€2) N W, () (see [6]), and the nonlinear Dirichlet
problem
—Apu= f(z), in Q
{ u(xz) =0, in 00

is uniquely solvable in Wy?(Q) (see [2]), where A,u = div(|Vul’"*Vu) is the
p-Laplacian operator. In the degenerate case, the degenerated p-Laplacian has
been studied in [3].

The paper is organized as follow. In Section 2 we present the definitions
and basic results. In Section 3 we prove our main result about existence and
uniqueness of solutions for problem (P).

2 Definitions and basic results

Let € be an open set in R™. By the symbol W(2) we denote the set of all
measurable a.e. in  positive and finite functions w = w(z), x € Q. Elements of
W(Q) will be called weight functions. Every weight w gives rise to a measure
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on the measurable subsets of RV through integration. This measure will be
denoted by . Thus, p,(E) = / w(x) dz for measurable sets E C RV,

E
Definition 2.1. Let 1<p < oo. A weight w is said to be an A,-weight, if
there is a positive constant C such that, for every ball B C RN

—1

1 p
(ﬁ/Bw(x) dx) (E/Bwl/(l_p)(x) dx) <C, if p>1,

1 1
- _ < 1 =
(|B|/B“’(”’>d””> (“% w<x>>—c’ it p=1

where |.| denotes the N-dimensional Lebesgue measure in RY. The infimum
over all such constants C is called the A, - constant of w and is dnotaded by
Cp -

If 1 < g<p, then A;C A, (see [5], [7] or [11] for more information about
Ap-weights). As an example of an A,-weight, the function w(z) = |z|*, z € R,
is in A, if and only if —N < a < N(p — 1) (see [11], Chapter IX, Corollary
4.4). If o€ BMO(RY), then w(z) = e #(*) € Ay for some a > 0 (see [9]).

Remark 2.1. If we Ay, 1 < p < oo, then

(1) <6ty

for all measurable subsets E of B (see 15.5 strong doubling property in [7]).
Therefore, p,,(E) = 0 if and only if |E| = 0; so there is no need to specify the
measure when using the ubiquitous expression almost everywhere and almost
every, both abbreviated a.e..

Definition 2.2. Let Q2 CR"™ a bounded open set, w e W(2) and 1<p < oc.
We shall denote by LP(),w) the Banach space of all measurable functions f
defined in ) for which

1/p
HfHLP(Q7w) - (‘/Q |f(x)|pw(x) dx) < Q.
We denote [LP(Q, w)]N = LP(Q,w) x...x LP(Q, w).

Remark 2.2. Ifw€ A, 1 < p < oo, then since w™ /=1 is locally integrable,
we have LP(Q,w) C L .(Q) (see [11], Remark 1.2.4). It thus makes sense to

loc
talk about weak derivatives of functions in LP(Q, w).

Definition 2.3. Let Q C RY be a bounded open set, 1 < p < oo, k be a non-
negative integer and w € A,. We shall denote by W*P(Q,w), the weighted
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Sobolev spaces, the set of all functions u € LP(Q,w) with weak derivatives
DYu e LP(Q,w), 1 <|a|<k. The norm in the space W*P(Q, w) is defined by

lalhwrro = ([ lPetaes [ |D“u<x>|”w<x>dx)1/p. 2.1)

1<lal <k

We also define the space Wéc P(Q,w) as the closure of C§°(€) with respect
to the norm (2.1). We have that the spaces W*P(Q, w) and Wéf’p(Q,w) are

Banach spaces (see Proposition 2.1.2 in [11]).
The dual space of W, ?(Q,w) is the space [W, P(Q,w)]* = W12 (Q,w),

WP (Qw) = {T = f— div(G) : G = (g1, ..., gn), 5, i—ﬂ eL” (Q,w)}.

It is evident that a weight function w which satisfies 0 < C; <w(x) < Co,
for a.e. x €€, gives nothing new (the space W*P(£2,w) is then identical with
the classical Sobolev space W*P(€2)). Consequently, we shall be interested in
all above such weight functions w which either vanish somewhere in QU9 or
increase to infinity (or both).

We need the following basics results.

Theorem 2.3. (The weighted Sobolev inequality) Let Q CRY be a bounded
open set and let w be an Ap-weight, 1 < p < co. Then there exists positive
constants Cq and § such that for all ue WyP(Q,w) and 1<n< N/(N—=1)+4

[l Low (2,0) < ColllVulll Lo (0,0): (2.2)

where Cqo may be taken to depend only on N, the Ap- constant of w, p and the
diameter of €.

Proof. Its suffices to prove the inequality for functions u € C3° () (see Theorem
1.3 in [4]). To extend the estimates (2.2) to arbitrary u e Wy P(Q,w), we let
{um} be a sequence of C§°(€) functions tending to u in W, (€, w). Applying
the estimates (2.2) to differences ty,, — um, , we see that {u,,} will be a Cauchy
sequence in LP(, w). Consequently the limit function « will lie in the desired
spaces and satisfy (2.2). O

Lemma 2.4. (a) Let 1 < p < oo, then exists a constant C, > 0 such that for
all £, neRY,

16772 & = Inl""*n| < Cy € = nl([&] + [n))P~.

(b) Let 1 < p < co. There exist two positive constants o, and (B, such that for
every £,neRYN (N >1)

ap( 1]+ Inl)P =2 1& = nl* < (I€[P726 = nl" 0, € =) < B (€] + )P ~2[€ =],
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where (.,.) denotes here the Euclidiean scalar product in RY.

Proof. See Proposition 17.2 and Proposition 17.3 in [2]. O

3 Weak Solutions

Let we Ay, 1 < p < co. We denote by X = W2P(Q,w) N W, ?(Q,w) with

the norm
1/p
ullx = (/ |Vu|pwdx—|—/ |Au|pwdx> .
Q Q

In this section we prove the existence and uniqueness of weak solutions
u € X to the Navier problem

Lu(z) = f(z) — div(G(x)), in Q,
(P) { u(z) =Au=0, in 09,

’ G ’
where (2 is a bounded open set of RV (N >2), 5 e’ (Q,w)and — € [L9(Q,v)]V,

G= (g1, 9N)-
Definition 3.1. We say that u € X is a weak solution for problem (P) if

/|Au|p_2AuA<pwdx+/ |Au|"*AuApvda

Q Q

+/ |Vu|p_2<Vu,V<p>wdx+/ |Vu|"*(Vu, Vo) vda
Q Q

:/Qf<pdx+/Q<G,V<p>dx, (3.1)

for all p € X, with f/w e LP' (R, w) and G/v e [LI (Q,v)]V, where (.,.) denotes
here the Euclidean scalar product in RY .

Remark 3.1. (i) Since 1 < ¢ < p < oo and if Y e /-9 (Q,w), there exists
w
a constant Cj, ; > 0 such that

HU’HL(I(Q7V) < Cpyql U’HL:D(Q7W)5 (3.2)

v p/(p—q) (p—a)/pq Y
where C) 4 = [/Q (;) wdx] = HV/WHLpg(p—q) (Qw)’
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In fact, since 1 < ¢ < p < 00, we have r = p/q > 1 and 1’ = p/(p — q),

ul|?, = /uqydxz/ ul'Y wde
[ulfpany = [ 1 [ Jue
1/r |y r’ 1/r’
(/|u|qrwdx> (/ (—) wdx)
Q Q \W
qa/p v\ P/ (p=a) (r—a)/p
(/ |u|pwdx> (/ (—) wdx) .
Q Q\W

Hence, HUHLq(Q,u) <Cpgq HU'HLP(Q,w)'
(ii) By (3.2), we have

IN

’ / A" AuApvdx
Q

< [ 18 Aglvds
Q

, 1/q’ 1/q

< (/ |Au|(q_1)q de) (/ |A<p|q1/dx>

Q Q

(¢—1)/q 1/q

= (/|Au|qydx> (/|A<p|qydx>

Q Q
= HAU’HqL;(lQ,u) ||A<)0||LLI(Q7V)
< CiLt AUl T 0 Cra I8¢l o)
< G llulls el

and, analogously, we also have

’/ IVul"? (Vu, Vo) v dx
Q

IN

/ \Vul'"" |Ve|v da
Q

IN

-1
Cagllulls ™ llellx-

Theorem 3.2. (a) Letwe A,, veW(Q),1 < q < p < oo and Y e Lp/(p_q)(Q,w);
w

(b) flwe Ll (Qw) and G/ve L' (Q,v)]N.
Then the problem (P) has a unique solution w€ X and

f

w

G|

+Cpyq B

Lr' (Q,w)

3

1/(p—1)
ullx < [Cn ]

La’(Q,v)

where Cq is the constant in Theorem 2.8 and Cp 4 is the constant in Remark

3.1 (i).
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Proof. (I) Ezistence. By Theorem 2.3 (with n = 1), we have that

IN

f p’ 1/p’ 1/p
= wdx) (/ |<p|pwdx>
w Q

oo

(f

Ca

IN

Vel Lo @.w)
Lr' (Q,w)

IN

Co el x (3.3)

Lr' (Q,w)

and by Remark 3.1 (i)

v < /|<G,w>|dx
Q

[ 161v6ds
Q

G
/u|V<p|1/dx
Q 14

1G]
v

’ /Q (G, V) dz

IN

IN

1V elllLa@.u)
L' (Q,v)

|G|

IN

Cp,q

Vel HLP(Q,w)
L' (Q,v)

lellx- (3-4)
L' (Q,v)

G|

IN

Cp,q

Define the functional J : X — R by

1
/|A<p|pwdx+—/|A<p|q1/dx
Q q Ja

1
/|V<p|pwdx+—/|V<p|q1/dx—/ fgodx—/(G,Vgo}dx.
Q q Ja Q Q

"I B I
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Using (3.3), (3.4), Remark 3.1(i) and Young’s inequality, we have that

1 1
—/ |A<p|pwdx—|——/ |Ap|?vdx
PJa q.Ja

1 1
+ —/|V<p|pwdx+—/|V<p|qydx
P Jo q Jo

J(p)

Y

f G
- = ol L@ = || = 1Vl Lo,
Hw LY (Q,w) Lo(@w) VollLe'(Q,v) Le@)
1 1
> —/|V<p|pwdx+—/|V<p|qz/dx
P Ja qa Ja
f G|
— Il ellan [ 16 e
LP" (Q,w) L (Q,v)
1 1
> — [ |[VePwdx+ - | |Vo|Tvde
P Ja q Jo
cr I 1 11617 1
- 2L = 196l By = || - ~11vell,
15, = T = |5 L~ Vel e
e e !
B poflw LP' (Q,w) a1 v L' (Q,v)

that is, J is bounded from below. Let {u,} be a minimizing sequence, that is,
a sequence such that

n inf .
J(un) legXJ(w)

Then for n large enough, we obtain

1 1
0>J(u,) = —/|Aun|Pwdx+_/|Au,n|‘1ydx
PJa q4Jq

1 1
+ —/|Vun|pwdx+—/|Vun|qydx
pJa q Ja

- [ fudo= [ (6. Vu) s

and we have
1 P 1 P
— | Ay’ wdz+ = | |Vu,[wdz
P Ja PJa
1 ) 1 . 1 ) 1 .
<- | |Auy|’wdx + = | |Aup|'vdx+ = | |[Vup["wdz+ - [ |Vu,|"vde
P Ja q.Ja pJa qJa

< | fundz+ [ (G, uy)dz. (3.5)
Q Q
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Hence, by Theorem 2.3 (with n = 1), (3.5) and Remark 3.1(i), we obtain

[l |15 z/ |Aun|pwdx—|—/ |Vun,|? wdx
Q Q

gp(/ﬂfundx+/Q<G,Vun>dx>

f Gl
w v

(
e
(

IN

p

1Vl |Lqm,u>)
La' (Q,v)
G

tnll gy + ]
LP (Q,w)

IN

[ 1Vun| HLp(Q,w) + Chyq [ Vua |L”(va)>

L? (Qw)

!
w La' (Q,v)
f G|

IN

Co + qu

L' (Qw)

p
w

)|un|x.
L' (Q,v)

1/(p—1)
L‘I'(Q,u)>:| .

Therefore {u,} is bounded in X. Since X is reflexive, there exists a subse-
quence, still denoted by {u,}, and a function v € X such that u,—u in X.
Since,

Hence,

G|

v

lun |l x < [p (CQ

+ CP7‘1 ’

Lr' (Qw)

X9<pl—>/f<pdx+/<G,V<p>dx,
Q Q
and

X3¢ — |‘A<)0HLP(Q7W) + HAQOHLq(Q,u) + 11Vl HLp(Q,w) + 11Vl HL(I(Q,V);

are continuous then J is continuous. Moreover since 1 < ¢ < p < oo we have
that J is convex and thus lower semi-continuous for the weak convergence. It
follows that

J(u) < liminf J(u,) = inf J(y),
n peX

and thus v is a minimizer of J on X (see Theorem 25.C and Corollary 25.15
in [12]). For any ¢ € X the function

1 1
A —/ |A(u—|—)\<p)|pwdx—|——/ [A(u+ M) |?vdx
P Ja q.Ja
1 1
+—/ |V(u+)\<p)|pwdx+—/|V(u+)\<p)|qydx
pJa q Ja

—/(u—|—)\<p)fdx—/ (G,V(u+ Ap))dx
Q Q
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has a minimum at A = 0. Hence,

d
il = X.
dA(J(u—F)up)) 0, Vpe

A=0

We have

13 (1964 20070) = p {19+ 2P0, V6) + A Vel

and

ddA (| Alu+ )P “’) = p|Au+ A" (Au+ AAp) Apw,

and we obtain

0 = Ju+)\<p>

A=0

- /|Vu+w>|p 2((Vu, V) + | Vo) w da

v

1
+ a(q [ IV A (V0 V) 4 AVl v
Q

i
¢

|Au+ AP 2 (Au+ M) Apw dx)

2

+ q/|Au—|—)\A<p|q_2(Au—|—)\Ago)Agoydx)
Q

— /g@fdx—/(G,Vg@}dx]
Q Q A=0

= /|Au|p_2AuA<pwdx+/ |Vu|P~2 (Vu, V) wdx
Q Q

+ /|Au|q_2AuA<p1/dx+/ |Vu|9™2 (Vu, V) vde
Q Q

_ /Qfgodx—/ﬂ<G,V<p>dx.

Therefore
/|Au|p_2AuA<pwdx+/ |VulP~2(Vu V) wdr
Q Q

—|—/ |Au|q_2AuA<p1/dx—|—/ |Vu|9™2 (Vu, Vo) vd
Q Q

:/wadx—k‘/Q(G,Vgo}dx,
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for all p € X, that is, u € X is a solution of problem (P).

(I1) Uniqueness. If uj,us € X are two weak solutions of problem (P), we
have

/|Au1|p_2Au1A<pwdx+/ |Auy |7 ? Auy Ap v da
Q Q

—|—/ |Vu|P—2 <Vu1,V<p>wdx—|—/ |Vui|972 (Vuy, V) vdx
Q Q
z/fwdx+/<G,V<p>dx,

Q Q

and

/|Au2|p_2Au2A<pwdx+/ |Aus|"? Auy Ap v da
Q Q

—|—/ |Vug|P—2 <VuQ,V<p>wdx—|—/ V|92 (Vug, V) vdx
Q Q

:/Qf<pdx+/Q<G,V<p>dwa

for all ¢ X. Hence

/ (|Au1|p_2Au1 — |Auz|p_2AuQ> Apwdx

Q

+/ (|Au1|q_2Au1— |Au2|‘1—2Au2>A<pydx
Q

+/ (|Vu1|p_2<Vu1, Vo) — |Vug|P~3(Vus, V<p>> wdz
Q

—|—/ (|Vu1|q_2<Vu1, V) — [Vug|T™*(Vus, V<p>> vdr =0.
Q

Taking ¢ = w1 — ug, and using Lemma 2.4(b) there exist positive constants
O, Qp, Og, O sSuch that
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o
Il

|Aug [P Auy — |Au2|p_2Au2> (Aus — Aug) wdz
|Aug |77 Auy — |Au2|q_2Au2> (Aus — Awg) vdz
|Vm|p_2<Vm, Vui — Vug) — |Vuz|p_2<VuQ, Vui — VuQ>> wdz

|Vu1|q_2<Vu1, Vuy — Vug) — |V’U,2|q_2<V’U,2, Vu; — V’u,2>> vdx

+
S— o o o
N N TN NN

|Aug [P Auy — |Au2|p_2Au2> (Aus — Aug) wdz

+ / (|Au1|q_2Au1 — |Au2|q_2AuQ>(Au1 — Aug)vdx
Q
+ / (|Vu1|P~2Vuy — |VuaP™*Vug, Vuy — Vug) w dz
Q
+ / (|Vu1|72Vuy — |Vug|7 2 Vug, Vuy — Vug) vdx
Q
p—2
> ozp/ (|Au1| + |Au2|> |Auy — Aug)® wdz
Q
p—2
dp/ (|Vu1| + |Vu2|> |Vuy — Vug|* wdz
Q
q—2
+ g / (|Au1| + |Au2|> |Auy — Auy > vdz
Q
q—2
dq/ (|Vu1|—|—|VuQ|> |Vuy — V| vdx
Q
p—2
> ozp/ (|Au1| + |Au2|> |Auy — Aug)® wdz
Q
p—2
+ dp/ (|Vu1| + |Vu2|> |Vuy — Vug| wda
Q

Therefore Au; = Aus and Vuy; = Vus a.e. and since u1, us € X, then u; = uo
a.e. (by Remark 2.1).

(IIT) Estimate for ||ull .
In particular, for ¢ = v € X in Definition 3.1 we have
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/|Au|pwdx—|—/ |Au|q1/dx—|—/ |Vu|pwdx—|—/ [Vul|?vdx
Q Q Q Q

= / fudx+/ (G,Vu)dx.
Q Q
Then, by Theorem 2.3 and Remark 3.1 (i), we obtain

lulf, = / AufPwde + / Vul wdz
Q Q

/|Au|pwdx—|—/ |Au|q1/dx—|—/ |Vu|pwdx—|—/ [Vul?vdx
Q Q Q Q

= /S)fudx—k‘/S)(G,Vu}dx

IN

f G|
< = lull oo,w + || — [1Vulllpaq,.
HW L (Q,w) L (8e) VollLa'(@,v) La@)
f G
< Co|= [ |VU'|HLP(Q7W)+CP7‘1 - [ |VU’|HL1’(Q,&))
WllLe (Q,w) La' (Q,v)
f G|
< (a2 Gy |1 Julx-
WllLe! (Q,w) VoL (o,v)
Therefore,
/(p—1)
f el '
lullx< (a2 + 6, [ -
Lr' (Q,w) La’'(Q,v)

O

Corollary 3.3. Under the assumptions of Theorem 3.2 with 2<q < p < c0.
If ui,us € X are solutions of

Luy(x) = f(x) — div(G(z)), in £,
(P1) { u(z) = Auq(z) =0, in 99,

and _ _
by { Pusle) = fla) — div(G(@), n 9,
2 ug(z) = Aug(z) =0, in 99,
then
1 f _ JF |G _ é| 1/(p-1)
lur = uallx < S5 (Cﬂ o g T T L ’
Lr' (Q,w) La' (Q,v)

where v is a positive constant, Cq and Cy, 4 are the same constants of Theorem
3.2.
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Proof. If uy and us are solutions of (P1) and (P2) then for all p € X we have
/Q |Auy [P Auy Apwda + /Q |Auy |7 ? Auy Ap v da
—|—/Q |Vu1|p_2<Vu1,V<p>wdx—|—/Q V|72 (Vuy, Vo) vda
—( /Q | AialP 2 Aus A wdz + /Q | Aio|"% Ay Ap v d
—|—/Q |Vu1|p_2<VuQ,V<p>wdx—|—/Q Vs |72 (Vug, Vi) de)
- /Q(f_f)<pdx+/ﬂ<a—é,w>dx. (3.6)

In particular, for ¢ = u; — ug, we obtain

(i) Since 2<¢q < p < oo and by Lemma 2.4 (b), there exist two positive
constants oy, and a4 such that

/ (|Au1|p_2Au1 - |A2|p_2A'U,2> Auy — ug) wdz
Q
p—2
Zozp/ (|Au1|—|—|AuQ|> |Auy — Aug|? wdz
Q
> a, / |Auy — AuglP 2| Auy — Aug? wdz = ozp/ |A(u1 — u2) P wdax,
Q Q
and analogously

/ (|Au1|q_2Au1—|AuQ|q_2AuQ> A(ul—ug)ydeozq/ |A(u1 — ug)|?vdx > 0.
Q Q

(ii) Since 2<q < p < oo and by Lemma 2.4 (b), there exit two positive
constants &, and &, such that

S~
—

|Vu1|p_2<Vu1, V(ur —ug)) — |VuQ|p_2<VuQ, V(uy — 1@)}) wdx
Q

(IVur P2 Vuy — |Vua" Vg, V(uy — us)) wda

Il
S~

Q

a, /(|Vu1| + [Vus))P 2| Vur — V| wda
Q

Y

Y

dp/ |V, — Vuo|P 2 |Vuy — V| wdz = dp/ |V (u1 — u2) [’ wdx,
Q Q
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and analogously,
/Q (|w1|q—2<w1, V(ur — ) — |[Vual"2(Vuiz, ¥ (1 — u2)>> v dz
qu/ﬂ IV (41 — u)|? v da > 0.
(iii) By Remark 3.1 (i) we have
’/Q(f—f)(ul—m)dx—k/ﬂ(G—é,V(ul—uQ)}dx

< (CQ f-r

w
Hence, with v = min{a,, &,}, we obtain in (3.6)

GG

v

+ vaq
Lr' (Q,w)

) s — wall .

La' (Qv)

v |ur — uall% Sozp/ [A(uy — u2) P wdx + dp/ IV (u1 — u2)|P wdz
Q Q

—f G-G
< (CYQHu +Cp,q | | > Hul_U'?HX'
w Lr' (Q,w) La’'(Q,v)
Therefore,
1 _F G— é 1/(p-1)
s =zl < 7o (CQ f=f Lo, [l6=¢ ) |
gl W llLe (Qw) v L' (Q,v)

O

Corollary 3.4. Assume 2<q < p < oo. Let the assumptions of Theorem
3.2 be fulfilled, and let {fm} and {Gn} be sequences of functions satisfying

f_m_>i in Lp,(Q,w) and M

—0asm — o0. If un, € X isa
w w

La’' (Q,v)
solution of the problem

(Po) Ly, (2) = fin () — div(Gin(x)), in Q,
m Um () = Aupp(xz) =0, in 09,
then um— u in X and u is a solution of problem (P).

Proof. By Corollary 3.3 we have
fm — fr

w

+Cpq

[
L’ (Q,w) v

1 1/(p-1)
i — ] < <Cﬂ ) .
X =760 Lo’ )
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Therefore {u,,} is a Cauchy sequence in X. Hence, there is u € X such that
Um —u in X. We have that u is a solution of problem (P). In fact, since u,,
is a solution of (P,,), for all ¢ € X we have

/Q|Au|p_2AuA<pwdx+/Q|Au|q_2AuA<p1/dx
—|—/Q|Vu|p_2<Vu,V<p>wdx—|—/Q|Vu|q_2<Vu,V<p>1/dx

_ /Q (|Au|p_2Au—|Am|p_2Aum> Apwdz

+/Q (|Au|‘1_2Au— |Aum|q—2Aum>A<pydx

+ /Q (|Vu|p_2<Vu, V) — |Vum|p_2<Vum,V<p>>wdx

+/Q (|Vu|q_2<Vu, V) — |Vum|q_2<Vum,V<p>> vdx
+/Q|Aum|p_2AumA<pwdx+/Q|Aum|q_2AumA<pydx
—|-/Q|Vum|p_2<Vum,V<p>wdx—|—/Q|Vum|q_2<Vum,V<p>1/dx
:Il—|—IQ—|—13—|—I4—|—/Qfm<pdx—|—/Q<Gm,V<p>dx
:Il—|—IQ—|—13—|—I4—|—/Qf<pdx—|—/Q<G,V<p>dx

+ [ (fn=Dpdo+ [ (GG Tpda (37)

where

|AuP 2 Au— | Ay, [P QAum> Apwdz,

u| TP Au— | Aup|?” QAum> Apvdr,

[VulP~* (Vu, V) — |Vum|p_2<Vum,V<p>> wdz,

S— — o 55—

(
(1
(
(|Vu|q *(Vu, V) — |Vum|q_2<Vum,V<p>> vdz.

We have that:
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(1) By Lemma 2.4 (a) there exists C}, > 0 such that
|| < / ||Au|p_2Au - |Aum|p_2Aum| |Ap|wdx
Q

< Cp/|Au—Aum|(|Au|+|Aum|)p_2|A<p|wdx.
Q

1 1 1
Let r =p/(p —2). Since — + — + — = 1, by the Generalized Holder inequality
p p T
we obtain
11
1/p 1/p 1/r
<Cp </ |Au — Aum|pwdr> </ |Ago|pwdr> </ (|Au| + |Aum|)(p_2)’“wdr>
Q Q Q

—2
<Cpllu— umllx llellxl1Aul + | dunllFrd) -

Now, since uy,— u in X, then exists a constant M > 0 such that ||u, || <M.
Hence,
IAu] + |Awm|ll Lo () <l x + l[tmllx <20 (3-8)

Therefore,

| 11]

IN

Cp M) ™2 [lu = um| x Il

= Crllu—umllx el x-

Analogously, there exists a constant C'5 such that
13| < Cllu — um| x [l€] x-
(2) By Lemma 2.4 (a) there exists a positive constant Cy such that
L] < / [ AuT 2 Au — [ AT % Aun| |Ap| v da
Q
< ¢ / AU — At (|A0] + | Aum])7=2 | Ag| v da.
Q
. . 11 1 .

Let s =¢q/(¢—2) (if 2 < g < p < o0). Since — + — + — = 1, by the Generalized
a qg S

Holder inequality we obtain

|12

1/q 1/q 1/s
<Cq </ |Au—Aum|qydr> </ |Ago|qydr> </ (|Au|+|Aum|)(q_2)sydr>
Q Q Q

= Cql|Au — Al age ) 180 ] a1 A0 + | Bum 4,2, .



A. C. CAVALHEIRO 37

Now, by Remark 3.1 (i) and (3.8) we have
] < Cq Cpall A= At Lo (2,0 Couall APl Lo (02,0 Clig 1 D0l + | A 1457, .
Cq Cf gllu — umllxllell x (2M)772

Co [lu — uml x llellx-

A

Analogously, there exists a positive constant Cy such that
La] < Caflu = umll x llellx-

In case q = 2, we have ||, | 14| € C2, u — | Il -
Therefore, we have Iy, I, I3, I4— 0 when m— oc.

(3) We also have

/(fm —f)wix+/ (G — C. V) dr
Q Q

w
— 0,

+ Chyq
Lr' (Q,w)

)nsonx
La’(Q,v)

when m— oo.
Therefore, in (3.7), we obtain when m— oo that

/|Au|p_2AuA<pwdx+/ |Au|"*AuApvda
Q Q

+/ |Vu|p_2<Vu,V<p>wdx+/ IVul"(Vu, Vo) v da
Q Q

:/wadx—k‘/Q(G,Vgo}dx,

i.e., u is a solution of problem (P). O

Example Let Q = {(z,y) €R? : 22 +y? < 1}, w(z,y) = (2% +y?) /2 (we Ay,

B cos(zy)
p:4andq:3)aV(xay):(x2+y2) 1/3’f(x,y):W and
sin(z + y) sin(zy) > By Theorem 3.2 , the problem

G(z,y) = ((x2_|_y2)1/6’ (x2_|_y2)1/6

A [(xQ + ) Y2 | Auf Au + (22 + y2)_1/3|Au|Au]

—div| (22 4+ )2 Vu|*Vu + (22 + y2)_1/3|Vu|Vu]

= f(x) — div(G(x)), in Q
u(z) =Au=0, in OQ

has a unique solution u € W24(, w) N W, *(Q, w).
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