https://doi.org/10.36853/ewjm0353

EXISTENCE RESULTS FOR NAVIER PROBLEMS WITH DEGENERATED (p,q)-LAPLACIAN AND (p,q)-BIHARMONIC OPERATORS IN WEIGHTED SOBOLEV SPACES

Albo Carlos Cavalheiro

 $\begin{array}{c} Department\ of\ Mathematics,\ State\ University\ of\ Londrina,\\ Londrina\ -\ PR,\ Brazil.\\ e-mail:\ accava@gmail.com \end{array}$

Abstract

In this article, we prove the existence and uniqueness of solutions for the Navier problem

$$(P) \begin{cases} \Delta \left[\omega(x) \left| \Delta u \right|^{p-2} \Delta u + \nu(x) \left| \Delta u \right|^{q-2} \Delta u \right] - \operatorname{div} \left[\omega(x) \left| \nabla u \right|^{p-2} \nabla u + \nu(x) \left| \nabla u \right|^{q-2} \nabla u \right] \\ = f(x) - \operatorname{div} (G(x)), & \text{in } \Omega, \\ u(x) = \Delta u = 0, & \text{in } \partial \Omega, \end{cases}$$

where Ω is a bounded open set of \mathbb{R}^{N} $(N \geq 2)$, $\frac{f}{\omega} \in L^{p'}(\Omega, \omega)$ and $\frac{G}{\nu} \in [L^{q'}(\Omega, \nu)]^{N}$

1 Introduction

The main purpose of this paper (see Theorem 3.2) is to establish the existence and uniqueness of solutions for the Navier problem

$$(P) \left\{ \begin{array}{cc} Lu(x) = f(x) - \operatorname{div}(G(x)), & \text{in } \ \Omega, \\ u(x) = \Delta u(x) = 0, & \text{in } \ \partial \Omega, \end{array} \right.$$

Key words: Degenerate nolinear elliptic equations, weighted Sobolev space. 2010 AMS Classification: 35J60, 35J70.

A. C. CAVALHEIRO 21

where

$$Lu(x) = \Delta \left[\omega(x) \left| \Delta u \right|^{p-2} \Delta u + \nu(x) \left| \Delta u \right|^{q-2} \Delta u \right] - \operatorname{div} \left[\omega(x) \left| \nabla u \right|^{p-2} \nabla u + \nu(x) \left| \nabla u \right|^{q-2} \nabla u \right],$$

 $\Omega \subset \mathbb{R}^N$ is a bounded open set, $\frac{f}{\omega} \in L^{p'}(\Omega, \omega)$, $\frac{G}{\nu} \in [L^{q'}(\Omega, \nu)]^N$, ω and ν are two weight functions (i.e., ω and ν are locally integrable functions on \mathbb{R}^N such that $0 < \omega(x) < \infty$ and $0 < \nu(x) < \infty$ a.e. $x \in \mathbb{R}^N$), Δ is the Laplacian operator, $1 < q < p < \infty$, 1/p + 1/p' = 1 and 1/q + 1/q' = 1.

For degenerate partial differential equations, i.e., equations with various types of singularities in the coefficients, it is natural to look for solutions in weighted Sobolev spaces (see [1], [4], [5], [7], [8] and [11]). The type of a weight depends on the equation type.

A class of weights, which is particularly well understood, is the class of A_p weights that was introduced by B.Muckenhoupt in the early 1970's (see [8]). These classes have found many useful applications in harmonic analysis (see [9] and 10]). Another reason for studying A_p -weights is the fact that powers of the distance to submanifolds of \mathbb{R}^N often belong to A_p (see [3] and [11]). There are, in fact, many interesting examples of weights (see [7] for p-admissible weights).

In the non-degenerate case (i.e. with $\omega(x) \equiv 1$), for all $f \in L^p(\Omega)$ the Poisson equation associated with the Dirichlet problem

$$\begin{cases} -\Delta u = f(x), \text{ in } \Omega \\ u(x) = 0, \text{ in } \partial \Omega \end{cases}$$

is uniquely solvable in $W^{2,p}(\Omega)\cap W^{1,p}_0(\Omega)$ (see [6]), and the nonlinear Dirichlet problem

$$\begin{cases} -\Delta_p u = f(x), \text{ in } \Omega \\ u(x) = 0, \text{ in } \partial\Omega \end{cases}$$

is uniquely solvable in $W_0^{1,p}(\Omega)$ (see [2]), where $\Delta_p u = \operatorname{div}(|\nabla u|^{p-2}\nabla u)$ is the p-Laplacian operator. In the degenerate case, the degenerated p-Laplacian has been studied in [3].

The paper is organized as follow. In Section 2 we present the definitions and basic results. In Section 3 we prove our main result about existence and uniqueness of solutions for problem (P).

2 Definitions and basic results

Let Ω be an open set in \mathbb{R}^n . By the symbol $\mathcal{W}(\Omega)$ we denote the set of all measurable a.e. in Ω positive and finite functions $\omega = \omega(x)$, $x \in \Omega$. Elements of $\mathcal{W}(\Omega)$ will be called weight functions. Every weight ω gives rise to a measure

on the measurable subsets of \mathbb{R}^N through integration. This measure will be denoted by μ_{ω} . Thus, $\mu_{\omega}(E) = \int_E \omega(x) dx$ for measurable sets $E \subset \mathbb{R}^N$.

Definition 2.1. Let $1 \le p < \infty$. A weight ω is said to be an A_p -weight, if there is a positive constant C such that, for every ball $B \subset \mathbb{R}^N$

$$\left(\frac{1}{|B|} \int_{B} \omega(x) \, dx\right) \left(\frac{1}{|B|} \int_{B} \omega^{1/(1-p)}(x) \, dx\right)^{p-1} \le C, \quad \text{if} \quad p > 1,$$

$$\left(\frac{1}{|B|} \int_{B} \omega(x) \, dx\right) \left(\text{ess} \sup_{x \in B} \frac{1}{\omega(x)}\right) \le C, \quad \text{if} \quad p = 1,$$

where |.| denotes the N-dimensional Lebesgue measure in \mathbb{R}^N . The infimum over all such constants C is called the A_p - constant of ω and is dnotaded by $C_{p,\omega}$.

If $1 < q \le p$, then $A_q \subset A_p$ (see [5], [7] or [11] for more information about A_p -weights). As an example of an A_p -weight, the function $\omega(x) = |x|^{\alpha}$, $x \in \mathbb{R}^N$, is in A_p if and only if $-N < \alpha < N(p-1)$ (see [11], Chapter IX, Corollary 4.4). If $\varphi \in BMO(\mathbb{R}^N)$, then $\omega(x) = \mathrm{e}^{\alpha \varphi(x)} \in A_2$ for some $\alpha > 0$ (see [9]).

Remark 2.1. If $\omega \in A_p$, 1 , then

$$\left(\frac{|E|}{|B|}\right)^p \le C_{p,\omega} \frac{\mu_{\omega}(E)}{\mu_{\omega}(B)}$$

for all measurable subsets E of B (see 15.5 strong doubling property in [7]). Therefore, $\mu_{\omega}(E) = 0$ if and only if |E| = 0; so there is no need to specify the measure when using the ubiquitous expression almost everywhere and almost every, both abbreviated a.e..

Definition 2.2. Let $\Omega \subset \mathbb{R}^n$ a bounded open set, $\omega \in \mathcal{W}(\Omega)$ and $1 \leq p < \infty$. We shall denote by $L^p(\Omega, \omega)$ the Banach space of all measurable functions f defined in Ω for which

$$||f||_{L^p(\Omega,\omega)} = \left(\int_{\Omega} |f(x)|^p \omega(x) dx\right)^{1/p} < \infty.$$

We denote $[L^p(\Omega,\omega)]^N = L^p(\Omega,\omega) \times ... \times L^p(\Omega,\omega)$.

Remark 2.2. If $\omega \in A_p$, $1 , then since <math>\omega^{-1/(p-1)}$ is locally integrable, we have $L^p(\Omega,\omega) \subset L^1_{\mathrm{loc}}(\Omega)$ (see [11], Remark 1.2.4). It thus makes sense to talk about weak derivatives of functions in $L^p(\Omega,\omega)$.

Definition 2.3. Let $\Omega \subset \mathbb{R}^N$ be a bounded open set, 1 , <math>k be a non-negative integer and $\omega \in A_p$. We shall denote by $W^{k,p}(\Omega,\omega)$, the weighted

Sobolev spaces, the set of all functions $u \in L^p(\Omega, \omega)$ with weak derivatives $D^{\alpha}u \in L^{p}(\Omega,\omega), 1 \leq |\alpha| \leq k$. The norm in the space $W^{k,p}(\Omega,\omega)$ is defined by

$$||u||_{W^{k,p}(\Omega,\omega)} = \left(\int_{\Omega} |u(x)|^{p} \omega(x) \, dx + \sum_{1 \le |\alpha| \le k} \int_{\Omega} |D^{\alpha} u(x)|^{p} \omega(x) \, dx\right)^{1/p}. \tag{2.1}$$

We also define the space $W_0^{k,p}(\Omega,\omega)$ as the closure of $C_0^{\infty}(\Omega)$ with respect to the norm (2.1). We have that the spaces $W^{k,p}(\Omega,\omega)$ and $W_0^{k,p}(\Omega,\omega)$ are Banach spaces (see Proposition 2.1.2 in [11]). The dual space of $W_0^{1,p}(\Omega,\omega)$ is the space $[W_0^{1,p}(\Omega,\omega)]^* = W^{-1,p'}(\Omega,\omega)$,

$$W^{-1,p'}(\Omega,\omega) = \{T = f - \operatorname{div}(G) : G = (g_1,...,g_N), \frac{f}{\omega}, \frac{g_j}{\omega} \in L^{p'}(\Omega,\omega)\}.$$

It is evident that a weight function ω which satisfies $0 < C_1 \le \omega(x) \le C_2$, for a.e. $x \in \Omega$, gives nothing new (the space $W^{k,p}(\Omega,\omega)$ is then identical with the classical Sobolev space $W^{k,p}(\Omega)$). Consequently, we shall be interested in all above such weight functions ω which either vanish somewhere in $\Omega \cup \partial \Omega$ or increase to infinity (or both).

We need the following basics results.

Theorem 2.3. (The weighted Sobolev inequality) Let $\Omega \subset \mathbb{R}^N$ be a bounded open set and let ω be an A_p -weight, 1 . Then there exists positiveconstants C_{Ω} and δ such that for all $u \in W_0^{1,p}(\Omega,\omega)$ and $1 \le \eta \le N/(N-1) + \delta$

$$||u||_{L^{\eta_p}(\Omega,\omega)} \le C_{\Omega} |||\nabla u|||_{L^p(\Omega,\omega)}, \tag{2.2}$$

where C_{Ω} may be taken to depend only on N, the A_p - constant of ω , p and the diameter of Ω .

Proof. Its suffices to prove the inequality for functions $u \in C_0^{\infty}(\Omega)$ (see Theorem 1.3 in [4]). To extend the estimates (2.2) to arbitrary $u \in W_0^{1,p}(\Omega,\omega)$, we let $\{u_m\}$ be a sequence of $C_0^{\infty}(\Omega)$ functions tending to u in $W_0^{1,p}(\Omega,\omega)$. Applying the estimates (2.2) to differences $u_{m_1} - u_{m_2}$, we see that $\{u_m\}$ will be a Cauchy sequence in $L^p(\Omega,\omega)$. Consequently the limit function u will lie in the desired spaces and satisfy (2.2).

Lemma 2.4. (a) Let $1 , then exists a constant <math>C_p > 0$ such that for all $\xi, \eta \in \mathbb{R}^N$,

$$||\xi|^{p-2} \xi - |\eta|^{p-2} \eta| \le C_p |\xi - \eta| (|\xi| + |\eta|)^{p-2}.$$

(b) Let $1 . There exist two positive constants <math>\alpha_p$ and β_p such that for every $\xi, \eta \in \mathbb{R}^N \ (N \ge 1)$

$$\alpha_p(|\xi| + |\eta|)^{p-2}|\xi - \eta|^2 \le \langle |\xi|^{p-2}\xi - |\eta|^{p-2}\eta, \xi - \eta \rangle \le \beta_p(|\xi| + |\eta|)^{p-2}|\xi - \eta|,$$

where $\langle ., . \rangle$ denotes here the Euclidiean scalar product in \mathbb{R}^N .

Proof. See Proposition 17.2 and Proposition 17.3 in [2].

3 Weak Solutions

Let $\omega \in A_p$, $1 . We denote by <math>X = W^{2,p}(\Omega,\omega) \cap W_0^{1,p}(\Omega,\omega)$ with the norm

$$\|u\|_X = \left(\int_{\Omega} |\nabla u|^p \,\omega \,dx + \int_{\Omega} |\Delta u|^p \,\omega \,dx\right)^{1/p}.$$

In this section we prove the existence and uniqueness of weak solutions $u \in X$ to the Navier problem

$$(P) \left\{ \begin{array}{ll} Lu(x) = f(x) - \operatorname{div}(G(x)), & \text{in } \Omega, \\ u(x) = \Delta u = 0, & \text{in } \partial \Omega, \end{array} \right.$$

where Ω is a bounded open set of \mathbb{R}^{N} $(N \geq 2)$, $\frac{f}{\omega} \in L^{p'}(\Omega, \omega)$ and $\frac{G}{\nu} \in [L^{q'}(\Omega, \nu)]^{N}$, $G = (g_1, ..., g_N)$.

Definition 3.1. We say that $u \in X$ is a weak solution for problem (P) if

$$\int_{\Omega} |\Delta u|^{p-2} \Delta u \, \Delta \varphi \, \omega \, dx + \int_{\Omega} |\Delta u|^{q-2} \Delta u \, \Delta \varphi \, \nu \, dx
+ \int_{\Omega} |\nabla u|^{p-2} \langle \nabla u, \nabla \varphi \rangle \, \omega \, dx + \int_{\Omega} |\nabla u|^{q-2} \langle \nabla u, \nabla \varphi \rangle \, \nu \, dx
= \int_{\Omega} f \, \varphi \, dx + \int_{\Omega} \langle G, \nabla \varphi \rangle \, dx,$$
(3.1)

for all $\varphi \in X$, with $f/\omega \in L^{p'}(\Omega, \omega)$ and $G/\nu \in [L^{q'}(\Omega, \nu)]^N$, where $\langle ., . \rangle$ denotes here the Euclidean scalar product in \mathbb{R}^N .

Remark 3.1. (i) Since $1 < q < p < \infty$ and if $\frac{\nu}{\omega} \in L^{p/(p-q)}(\Omega, \omega)$, there exists a constant $C_{p,q} > 0$ such that

$$||u||_{L^{q}(\Omega,\nu)} \le C_{p,q} ||u||_{L^{p}(\Omega,\omega)},$$
 (3.2)

where
$$C_{p,q} = \left[\int_{\Omega} \left(\frac{\nu}{\omega} \right)^{p/(p-q)} \omega \, dx \right]^{(p-q)/p \, q} = \|\nu/\omega\|_{L^{p/(p-q)}(\Omega,\omega)}^{1/q}.$$

In fact, since $1 < q < p < \infty$, we have r = p/q > 1 and r' = p/(p - q),

$$\begin{aligned} \|u\|_{L^{q}(\Omega,\nu)}^{q} &= \int_{\Omega} |u|^{q} \nu \, dx = \int_{\Omega} |u|^{q} \frac{\nu}{\omega} \omega \, dx \\ &\leq \left(\int_{\Omega} |u|^{q} r \, \omega \, dx \right)^{1/r} \left(\int_{\Omega} \left(\frac{\nu}{\omega} \right)^{r'} \omega \, dx \right)^{1/r'} \\ &= \left(\int_{\Omega} |u|^{p} \omega \, dx \right)^{q/p} \left(\int_{\Omega} \left(\frac{\nu}{\omega} \right)^{p/(p-q)} \omega \, dx \right)^{(p-q)/p}. \end{aligned}$$

Hence, $\|u\|_{L^{q}(\Omega,\nu)} \le C_{p,q} \|u\|_{L^{p}(\Omega,\omega)}$.

(ii) By (3.2), we have

$$\begin{split} \left| \int_{\Omega} |\Delta u|^{q-2} \, \Delta u \, \Delta \varphi \, \nu \, dx \right| & \leq \int_{\Omega} |\Delta u|^{q-1} \, |\Delta \varphi| \, \nu \, dx \\ & \leq \left(\int_{\Omega} |\Delta u|^{(q-1)q'} \nu \, dx \right)^{1/q'} \left(\int_{\Omega} |\Delta \varphi|^q \, \nu \, dx \right)^{1/q} \\ & = \left(\int_{\Omega} |\Delta u|^q \, \nu \, dx \right)^{(q-1)/q} \left(\int_{\Omega} |\Delta \varphi|^q \, \nu \, dx \right)^{1/q} \\ & = \|\Delta u\|_{L^q(\Omega,\nu)}^{q-1} \, \|\Delta \varphi\|_{L^q(\Omega,\nu)} \\ & \leq C_{p,q}^{q-1} \, \|\Delta u\|_{L^p(\Omega,\omega)}^{q-1} \, C_{p,q} \, \|\Delta \varphi\|_{L^p(\Omega,\omega)} \\ & \leq C_{p,q}^q \, \|u\|_X^{q-1} \, \|\varphi\|_X, \end{split}$$

and, analogously, we also have

$$\left| \int_{\Omega} |\nabla u|^{q-2} \langle \nabla u, \nabla \varphi \rangle \nu \, dx \right| \leq \int_{\Omega} |\nabla u|^{q-1} |\nabla \varphi| \nu \, dx$$
$$\leq C_{p,q}^{q} ||u||_{X}^{q-1} ||\varphi||_{X}.$$

Theorem 3.2. (a) Let $\omega \in A_p$, $\nu \in \mathcal{W}(\Omega)$, $1 < q < p < \infty$ and $\frac{\nu}{\omega} \in L^{p/(p-q)}(\Omega, \omega)$; (b) $f/\omega \in L^{p'}(\Omega, \omega)$ and $G/\nu \in [L^{q'}(\Omega, \nu)]^N$. Then the problem (P) has a unique solution $u \in X$ and

$$\|u\|_{X} \le \left[C_{\Omega} \left\| \frac{f}{\omega} \right\|_{L^{p'}(\Omega,\omega)} + C_{p,q} \left\| \frac{|G|}{\nu} \right\|_{L^{q'}(\Omega,\nu)} \right]^{1/(p-1)},$$

where C_{Ω} is the constant in Theorem 2.3 and $C_{p,q}$ is the constant in Remark 3.1 (i).

Proof. (I) Existence. By Theorem 2.3 (with $\eta = 1$), we have that

$$\left| \int_{\Omega} f \varphi \, dx \right| \leq \left(\int_{\Omega} \left| \frac{f}{\omega} \right|^{p'} \omega \, dx \right)^{1/p'} \left(\int_{\Omega} |\varphi|^{p} \omega \, dx \right)^{1/p}$$

$$\leq C_{\Omega} \left\| \frac{f}{\omega} \right\|_{L^{p'}(\Omega,\omega)} \||\nabla \varphi||_{L^{p}(\Omega,\omega)}$$

$$\leq C_{\Omega} \left\| \frac{f}{\omega} \right\|_{L^{p'}(\Omega,\omega)} \|\varphi\|_{X},$$

$$(3.3)$$

and by Remark 3.1 (i)

$$\left| \int_{\Omega} \langle G, \nabla \varphi \rangle \, dx \right| dx \leq \int_{\Omega} |\langle G, \nabla \varphi \rangle| \, dx$$

$$\leq \int_{\Omega} |G| |\nabla \varphi| \, dx$$

$$= \int_{\Omega} \frac{|G|}{\nu} |\nabla \varphi| \, \nu \, dx$$

$$\leq \left\| \frac{|G|}{\nu} \right\|_{L^{q'}(\Omega, \nu)} \| |\nabla \varphi| \|_{L^{q}(\Omega, \nu)}$$

$$\leq C_{p,q} \left\| \frac{|G|}{\nu} \right\|_{L^{q'}(\Omega, \nu)} \| |\nabla \varphi| \|_{L^{p}(\Omega, \omega)}$$

$$\leq C_{p,q} \left\| \frac{|G|}{\nu} \right\|_{L^{q'}(\Omega, \nu)} \| \varphi \|_{X}. \tag{3.4}$$

Define the functional $J: X \to \mathbb{R}$ by

$$J(\varphi) = \frac{1}{p} \int_{\Omega} |\Delta \varphi|^p \, \omega \, dx + \frac{1}{q} \int_{\Omega} |\Delta \varphi|^q \, \nu \, dx$$
$$+ \frac{1}{p} \int_{\Omega} |\nabla \varphi|^p \, \omega \, dx + \frac{1}{q} \int_{\Omega} |\nabla \varphi|^q \, \nu \, dx - \int_{\Omega} f \, \varphi \, dx - \int_{\Omega} \langle G, \nabla \varphi \rangle \, dx.$$

A. C. CAVALHEIRO 27

Using (3.3), (3.4), Remark 3.1(i) and Young's inequality, we have that

$$J(\varphi) \geq \frac{1}{p} \int_{\Omega} |\Delta \varphi|^{p} \omega \, dx + \frac{1}{q} \int_{\Omega} |\Delta \varphi|^{q} \nu \, dx$$

$$+ \frac{1}{p} \int_{\Omega} |\nabla \varphi|^{p} \omega \, dx + \frac{1}{q} \int_{\Omega} |\nabla \varphi|^{q} \nu \, dx$$

$$- \left\| \frac{f}{\omega} \right\|_{L^{p'}(\Omega,\omega)} \|\varphi\|_{L^{p}(\Omega,\omega)} - \left\| \frac{|G|}{\nu} \right\|_{L^{q'}(\Omega,\nu)} \||\nabla \varphi||_{L^{q}(\Omega,\nu)}$$

$$\geq \frac{1}{p} \int_{\Omega} |\nabla \varphi|^{p} \omega \, dx + \frac{1}{q} \int_{\Omega} |\nabla \varphi|^{q} \nu \, dx$$

$$- C_{\Omega} \left\| \frac{f}{\omega} \right\|_{L^{p'}(\Omega,\omega)} \||\nabla \varphi||_{L^{p}(\Omega,\omega)} - \left\| \frac{|G|}{\nu} \right\|_{L^{q'}(\Omega,\nu)} \||\nabla \varphi||_{L^{q}(\Omega,\nu)}$$

$$\geq \frac{1}{p} \int_{\Omega} |\nabla \varphi|^{p} \omega \, dx + \frac{1}{q} \int_{\Omega} |\nabla \varphi|^{q} \nu \, dx$$

$$- \frac{C_{\Omega}^{p'}}{p'} \left\| \frac{f}{\omega} \right\|_{L^{p'}(\Omega,\omega)}^{p'} - \frac{1}{p} \||\nabla \varphi||_{L^{p}(\Omega,\omega)}^{p} - \frac{1}{q'} \|\frac{|G|}{\nu} \|_{L^{q'}(\Omega,\nu)}^{q'} - \frac{1}{q} \||\nabla \varphi||_{L^{q}(\Omega,\nu)}^{q}$$

$$\geq - \frac{C_{\Omega}^{p'}}{p'} \left\| \frac{f}{\omega} \right\|_{L^{p'}(\Omega,\omega)}^{p'} - \frac{1}{q'} \left\| \frac{|G|}{\nu} \right\|_{L^{q'}(\Omega,\nu)}^{q'}$$

that is, J is bounded from below. Let $\{u_n\}$ be a minimizing sequence, that is, a sequence such that

$$J(u_n) \to \inf_{\varphi \in X} J(\varphi)$$
.

Then for n large enough, we obtain

$$0 \ge J(u_n) = \frac{1}{p} \int_{\Omega} |\Delta u_n|^p \, \omega \, dx + \frac{1}{q} \int_{\Omega} |\Delta u_n|^q \, \nu \, dx$$
$$+ \frac{1}{p} \int_{\Omega} |\nabla u_n|^p \, \omega \, dx + \frac{1}{q} \int_{\Omega} |\nabla u_n|^q \, \nu \, dx$$
$$- \int_{\Omega} f \, u_n \, dx - \int_{\Omega} \langle G, \nabla u_n \rangle \, dx,$$

and we have

$$\frac{1}{p} \int_{\Omega} |\Delta u_n|^p \,\omega \,dx + \frac{1}{p} \int_{\Omega} |\nabla u_n|^p \,\omega \,dx
\leq \frac{1}{p} \int_{\Omega} |\Delta u_n|^p \,\omega \,dx + \frac{1}{q} \int_{\Omega} |\Delta u_n|^q \,\nu \,dx + \frac{1}{p} \int_{\Omega} |\nabla u_n|^p \,\omega \,dx + \frac{1}{q} \int_{\Omega} |\nabla u_n|^q \,\nu \,dx
\leq \int_{\Omega} f \,u_n \,dx + \int_{\Omega} \langle G, u_n \rangle \,dx.$$
(3.5)

Hence, by Theorem 2.3 (with $\eta = 1$), (3.5) and Remark 3.1(i), we obtain

$$\begin{aligned} &\|u_n\|_X^p = \int_{\Omega} |\Delta u_n|^p \, \omega \, dx + \int_{\Omega} |\nabla u_n|^p \, \omega \, dx \\ &\leq p \left(\int_{\Omega} f \, u_n \, dx + \int_{\Omega} \langle G, \nabla u_n \rangle \, dx \right) \\ &\leq p \left(\left\| \frac{f}{\omega} \right\|_{L^{p'}(\Omega,\omega)} \|u_n\|_{L^p(\Omega,\omega)} + \left\| \frac{|G|}{\nu} \right\|_{L^{q'}(\Omega,\nu)} \||\nabla u_n||_{L^q(\Omega,\nu)} \right) \\ &\leq p \left(C_{\Omega} \left\| \frac{f}{\omega} \right\|_{L^{p'}(\Omega,\omega)} \||\nabla u_n||_{L^p(\Omega,\omega)} + C_{p,q} \left\| \frac{|G|}{\nu} \right\|_{L^{q'}(\Omega,\nu)} \||\nabla u_n||_{L^p(\Omega,\omega)} \right) \\ &\leq p \left(C_{\Omega} \left\| \frac{f}{\omega} \right\|_{L^{p'}(\Omega,\omega)} + C_{p,q} \left\| \frac{|G|}{\nu} \right\|_{L^{q'}(\Omega,\nu)} \right) \|u_n\|_X. \end{aligned}$$

Hence,

$$||u_n||_X \le \left[p \left(C_{\Omega} \left\| \frac{f}{\omega} \right\|_{L^{p'}(\Omega, \omega)} + C_{p,q} \left\| \frac{|G|}{\nu} \right\|_{L^{q'}(\Omega, \nu)} \right) \right]^{1/(p-1)}.$$

Therefore $\{u_n\}$ is bounded in X. Since X is reflexive, there exists a subsequence, still denoted by $\{u_n\}$, and a function $u \in X$ such that $u_n \rightharpoonup u$ in X. Since,

$$X \ni \varphi \mapsto \int_{\Omega} f \varphi dx + \int_{\Omega} \langle G, \nabla \varphi \rangle dx,$$

and

$$X\ni\varphi\mapsto \|\Delta\varphi\|_{L^p(\Omega,\omega)}+\|\Delta\varphi\|_{L^q(\Omega,\nu)}+\|\,|\nabla\varphi|\,\|_{L^p(\Omega,\omega)}+\|\,|\nabla\varphi|\,\|_{L^q(\Omega,\nu)},$$

are continuous then J is continuous. Moreover since $1 < q < p < \infty$ we have that J is convex and thus lower semi-continuous for the weak convergence. It follows that

$$J(u) \le \liminf_{n} J(u_n) = \inf_{\varphi \in X} J(\varphi),$$

and thus u is a minimizer of J on X (see Theorem 25.C and Corollary 25.15 in [12]). For any $\varphi \in X$ the function

$$\begin{array}{ll} \lambda \ \mapsto & \frac{1}{p} \int_{\Omega} |\Delta(u + \lambda \varphi)|^p \, \omega \, dx + \frac{1}{q} \int_{\Omega} |\Delta(u + \lambda \varphi)|^q \, \nu \, dx \\ & + \frac{1}{p} \int_{\Omega} \left| \nabla(u + \lambda \varphi) \right|^p \omega \, dx + \frac{1}{q} \int_{\Omega} \left| \nabla(u + \lambda \varphi) \right|^q \nu \, dx \\ & - \int_{\Omega} (u + \lambda \varphi) \, f \, dx - \int_{\Omega} \left\langle G, \nabla(u + \lambda \varphi) \right\rangle dx \end{array}$$

A. C. CAVALHEIRO 29

has a minimum at $\lambda = 0$. Hence,

$$\frac{d}{d\lambda} \left(J(u + \lambda \varphi) \right) \bigg|_{\lambda = 0} = 0, \ \forall \varphi \in X.$$

We have

$$\frac{d}{d\,\lambda}\left(|\,\nabla(u+\lambda\,\varphi)|^p\,\omega\right)=p\,\{|\nabla(u+\lambda\,\varphi)|^{p-2}(\langle\nabla u,\nabla\varphi\rangle+\lambda\,|\nabla\varphi|^2)\}\,\omega,$$

and

$$\frac{d}{d\lambda}\left(|\Delta(u+\lambda\varphi)|^p\omega\right) = p\left|\Delta u + \lambda\Delta\varphi\right|^{p-2}(\Delta u + \lambda\Delta\varphi)\,\Delta\varphi\,\omega,$$

and we obtain

$$0 = \frac{d}{d\lambda} \left(J(u + \lambda \varphi) \right) \Big|_{\lambda=0}$$

$$= \left[\frac{1}{p} \left(p \int_{\Omega} |\nabla(u + \lambda \varphi)|^{p-2} (\langle \nabla u, \nabla \varphi \rangle + \lambda |\nabla \varphi|^{2}) \omega \, dx \right.$$

$$+ p \int_{\Omega} |\Delta u + \lambda \Delta \varphi|^{p-2} (\Delta u + \lambda \Delta \varphi) \, \Delta \varphi \, \omega \, dx \right)$$

$$+ \frac{1}{q} \left(q \int_{\Omega} |\nabla(u + \lambda \varphi)|^{q-2} (\langle \nabla u, \nabla \varphi \rangle + \lambda |\nabla \varphi|^{2}) \nu \, dx \right.$$

$$+ q \int_{\Omega} |\Delta u + \lambda \Delta \varphi|^{q-2} (\Delta u + \lambda \Delta \varphi) \, \Delta \varphi \, \nu \, dx \right)$$

$$- \int_{\Omega} \varphi \, f \, dx - \int_{\Omega} \langle G, \nabla \varphi \rangle \, dx \Big] \Big|_{\lambda=0}$$

$$= \int_{\Omega} |\Delta u|^{p-2} \Delta u \, \Delta \varphi \, \omega \, dx + \int_{\Omega} |\nabla u|^{p-2} \langle \nabla u, \nabla \varphi \rangle \, \omega \, dx$$

$$+ \int_{\Omega} |\Delta u|^{q-2} \Delta u \, \Delta \varphi \, \nu \, dx + \int_{\Omega} |\nabla u|^{q-2} \langle \nabla u, \nabla \varphi \rangle \, \nu \, dx$$

$$- \int_{\Omega} f \, \varphi \, dx - \int_{\Omega} \langle G, \nabla \varphi \rangle \, dx.$$

Therefore

$$\int_{\Omega} |\Delta u|^{p-2} \Delta u \, \Delta \varphi \, \omega \, dx + \int_{\Omega} |\nabla u|^{p-2} \langle \nabla u \, \nabla \varphi \rangle \, \omega \, dx
+ \int_{\Omega} |\Delta u|^{q-2} \Delta u \, \Delta \varphi \, \nu \, dx + \int_{\Omega} |\nabla u|^{q-2} \, \langle \nabla u, \nabla \varphi \rangle \, \nu \, dx
= \int_{\Omega} f \, \varphi \, dx + \int_{\Omega} \langle G, \nabla \varphi \rangle \, dx,$$

for all $\varphi \in X$, that is, $u \in X$ is a solution of problem (P).

(II) Uniqueness. If $u_1, u_2 \in X$ are two weak solutions of problem (P), we have

$$\int_{\Omega} |\Delta u_{1}|^{p-2} \Delta u_{1} \, \Delta \varphi \, \omega \, dx + \int_{\Omega} |\Delta u_{1}|^{q-2} \Delta u_{1} \, \Delta \varphi \, \nu \, dx
+ \int_{\Omega} |\nabla u_{1}|^{p-2} \, \langle \nabla u_{1}, \nabla \varphi \rangle \, \omega \, dx + \int_{\Omega} |\nabla u_{1}|^{q-2} \, \langle \nabla u_{1}, \nabla \varphi \rangle \, \nu \, dx
= \int_{\Omega} f \, \varphi \, dx + \int_{\Omega} \langle G, \nabla \varphi \rangle \, dx,$$

and

$$\int_{\Omega} |\Delta u_{2}|^{p-2} \Delta u_{2} \, \Delta \varphi \, \omega \, dx + \int_{\Omega} |\Delta u_{2}|^{q-2} \Delta u_{2} \, \Delta \varphi \, \nu \, dx
+ \int_{\Omega} |\nabla u_{2}|^{p-2} \, \langle \nabla u_{2}, \nabla \varphi \rangle \, \omega \, dx + \int_{\Omega} |\nabla u_{2}|^{q-2} \, \langle \nabla u_{2}, \nabla \varphi \rangle \, \nu \, dx
= \int_{\Omega} f \, \varphi \, dx + \int_{\Omega} \langle G, \nabla \varphi \rangle \, dx,$$

for all φX . Hence

$$\int_{\Omega} \left(\left| \Delta u_{1} \right|^{p-2} \Delta u_{1} - \left| \Delta u_{2} \right|^{p-2} \Delta u_{2} \right) \Delta \varphi \, \omega \, dx
+ \int_{\Omega} \left(\left| \Delta u_{1} \right|^{q-2} \Delta u_{1} - \left| \Delta u_{2} \right|^{q-2} \Delta u_{2} \right) \Delta \varphi \, \nu \, dx
+ \int_{\Omega} \left(\left| \nabla u_{1} \right|^{p-2} \langle \nabla u_{1}, \nabla \varphi \rangle - \left| \nabla u_{2} \right|^{p-2} \langle \nabla u_{2}, \nabla \varphi \rangle \right) \omega \, dx
+ \int_{\Omega} \left(\left| \nabla u_{1} \right|^{q-2} \langle \nabla u_{1}, \nabla \varphi \rangle - \left| \nabla u_{2} \right|^{q-2} \langle \nabla u_{2}, \nabla \varphi \rangle \right) \nu \, dx = 0.$$

Taking $\varphi = u_1 - u_2$, and using Lemma 2.4(b) there exist positive constants $\alpha_p, \tilde{\alpha}_p, \alpha_q, \tilde{\alpha}_q$ such that

$$0 = \int_{\Omega} \left(|\Delta u_{1}|^{p-2} \Delta u_{1} - |\Delta u_{2}|^{p-2} \Delta u_{2} \right) (\Delta u_{1} - \Delta u_{2}) \omega \, dx$$

$$+ \int_{\Omega} \left(|\Delta u_{1}|^{q-2} \Delta u_{1} - |\Delta u_{2}|^{q-2} \Delta u_{2} \right) (\Delta u_{1} - \Delta u_{2}) \nu \, dx$$

$$+ \int_{\Omega} \left(|\nabla u_{1}|^{p-2} \langle \nabla u_{1}, \nabla u_{1} - \nabla u_{2} \rangle - |\nabla u_{2}|^{p-2} \langle \nabla u_{2}, \nabla u_{1} - \nabla u_{2} \rangle \right) \omega \, dx$$

$$+ \int_{\Omega} \left(|\nabla u_{1}|^{q-2} \langle \nabla u_{1}, \nabla u_{1} - \nabla u_{2} \rangle - |\nabla u_{2}|^{q-2} \langle \nabla u_{2}, \nabla u_{1} - \nabla u_{2} \rangle \right) \nu \, dx$$

$$= \int_{\Omega} \left(|\Delta u_{1}|^{p-2} \Delta u_{1} - |\Delta u_{2}|^{p-2} \Delta u_{2} \right) (\Delta u_{1} - \Delta u_{2}) \omega \, dx$$

$$+ \int_{\Omega} \left(|\Delta u_{1}|^{q-2} \Delta u_{1} - |\Delta u_{2}|^{q-2} \Delta u_{2} \right) (\Delta u_{1} - \Delta u_{2}) \nu \, dx$$

$$+ \int_{\Omega} \left\langle |\nabla u_{1}|^{p-2} \nabla u_{1} - |\nabla u_{2}|^{p-2} \nabla u_{2}, \nabla u_{1} - \nabla u_{2} \right\rangle \omega \, dx$$

$$+ \int_{\Omega} \left\langle |\nabla u_{1}|^{q-2} \nabla u_{1} - |\nabla u_{2}|^{q-2} \nabla u_{2}, \nabla u_{1} - \nabla u_{2} \right\rangle \nu \, dx$$

$$\geq \alpha_{p} \int_{\Omega} \left(|\Delta u_{1}| + |\Delta u_{2}| \right)^{p-2} |\Delta u_{1} - \Delta u_{2}|^{2} \omega \, dx$$

$$+ \tilde{\alpha}_{p} \int_{\Omega} \left(|\nabla u_{1}| + |\nabla u_{2}| \right)^{p-2} |\nabla u_{1} - \nabla u_{2}|^{2} \omega \, dx$$

$$+ \alpha_{q} \int_{\Omega} \left(|\Delta u_{1}| + |\Delta u_{2}| \right)^{q-2} |\Delta u_{1} - \Delta u_{2}|^{2} \nu \, dx$$

$$+ \tilde{\alpha}_{q} \int_{\Omega} \left(|\nabla u_{1}| + |\nabla u_{2}| \right)^{q-2} |\nabla u_{1} - \nabla u_{2}|^{2} \nu \, dx$$

$$\geq \alpha_{p} \int_{\Omega} \left(|\Delta u_{1}| + |\Delta u_{2}| \right)^{p-2} |\Delta u_{1} - \Delta u_{2}|^{2} \omega \, dx$$

$$+ \tilde{\alpha}_{p} \int_{\Omega} \left(|\nabla u_{1}| + |\nabla u_{2}| \right)^{p-2} |\nabla u_{1} - \nabla u_{2}|^{2} \omega \, dx$$

$$+ \tilde{\alpha}_{p} \int_{\Omega} \left(|\nabla u_{1}| + |\nabla u_{2}| \right)^{p-2} |\nabla u_{1} - \nabla u_{2}|^{2} \omega \, dx$$

Therefore $\Delta u_1 = \Delta u_2$ and $\nabla u_1 = \nabla u_2$ a.e. and since $u_1, u_2 \in X$, then $u_1 = u_2$ a.e. (by Remark 2.1).

(III) Estimate for $||u||_X$. In particular, for $\varphi = u \in X$ in Definition 3.1 we have

$$\int_{\Omega} |\Delta u|^p \,\omega \,dx + \int_{\Omega} |\Delta u|^q \,\nu \,dx + \int_{\Omega} |\nabla u|^p \,\omega \,dx + \int_{\Omega} |\nabla u|^q \,\nu \,dx$$
$$= \int_{\Omega} f \,u \,dx + \int_{\Omega} \langle G, \nabla u \rangle \,dx.$$

Then, by Theorem 2.3 and Remark 3.1 (i), we obtain

$$\|u\|_{X}^{p} = \int_{\Omega} |\Delta u|^{p} \omega \, dx + \int_{\Omega} |\nabla u|^{p} \omega \, dx$$

$$\leq \int_{\Omega} |\Delta u|^{p} \omega \, dx + \int_{\Omega} |\Delta u|^{q} \nu \, dx + \int_{\Omega} |\nabla u|^{p} \omega \, dx + \int_{\Omega} |\nabla u|^{q} \nu \, dx$$

$$= \int_{\Omega} f \, u \, dx + \int_{\Omega} \langle G, \nabla u \rangle \, dx$$

$$\leq \left\| \frac{f}{\omega} \right\|_{L^{p'}(\Omega,\omega)} \|u\|_{L^{p}(\Omega,\omega)} + \left\| \frac{|G|}{\nu} \right\|_{L^{q'}(\Omega,\nu)} \||\nabla u||_{L^{q}(\Omega,\nu)}$$

$$\leq C_{\Omega} \left\| \frac{f}{\omega} \right\|_{L^{p'}(\Omega,\omega)} \||\nabla u||_{L^{p}(\Omega,\omega)} + C_{p,q} \left\| \frac{|G|}{\nu} \right\|_{L^{q'}(\Omega,\nu)} \||\nabla u||_{L^{p}(\Omega,\omega)}$$

$$\leq \left(C_{\Omega} \left\| \frac{f}{\omega} \right\|_{L^{p'}(\Omega,\omega)} + C_{p,q} \left\| \frac{|G|}{\nu} \right\|_{L^{q'}(\Omega,\nu)} \right) \|u\|_{X}.$$

Therefore,

$$||u||_X \le \left(C_{\Omega} \left\| \frac{f}{\omega} \right\|_{L^{p'}(\Omega,\omega)} + C_{p,q} \left\| \frac{|G|}{\nu} \right\|_{L^{q'}(\Omega,\nu)} \right)^{1/(p-1)}.$$

Corollary 3.3. Under the assumptions of Theorem 3.2 with $2 \le q . If <math>u_1, u_2 \in X$ are solutions of

$$(P_1) \begin{cases} Lu_1(x) = f(x) - \operatorname{div}(G(x)), & \text{in } \Omega, \\ u_1(x) = \Delta u_1(x) = 0, & \text{in } \partial\Omega, \end{cases}$$

and

$$(P_2) \left\{ \begin{array}{cc} Lu_2(x) = \tilde{f}(x) - \operatorname{div}(\tilde{G}(x)), & \text{in } \Omega, \\ u_2(x) = \Delta u_2(x) = 0, & \text{in } \partial\Omega, \end{array} \right.$$

then

$$\|u_1 - u_2\|_X \le \frac{1}{\gamma^{1/(p-1)}} \left(C_{\Omega} \left\| \frac{f - \tilde{f}}{\omega} \right\|_{L^{p'}(\Omega, \omega)} + C_{p, q} \left\| \frac{|G - \tilde{G}|}{\nu} \right\|_{L^{q'}(\Omega, \nu)} \right)^{1/(p-1)},$$

where γ is a positive constant, C_{Ω} and $C_{p,q}$ are the same constants of Theorem 3.2.

Proof. If u_1 and u_2 are solutions of (P1) and (P2) then for all $\varphi \in X$ we have

$$\int_{\Omega} |\Delta u_{1}|^{p-2} \Delta u_{1} \, \Delta \varphi \, \omega \, dx + \int_{\Omega} |\Delta u_{1}|^{q-2} \Delta u_{1} \, \Delta \varphi \, \nu \, dx
+ \int_{\Omega} |\nabla u_{1}|^{p-2} \langle \nabla u_{1}, \nabla \varphi \rangle \, \omega \, dx + \int_{\Omega} |\nabla u_{1}|^{q-2} \, \langle \nabla u_{1}, \nabla \varphi \rangle \, \nu \, dx
- \left(\int_{\Omega} |\Delta u_{2}|^{p-2} \Delta u_{2} \, \Delta \varphi \, \omega \, dx + \int_{\Omega} |\Delta u_{2}|^{q-2} \Delta u_{2} \, \Delta \varphi \, \nu \, dx \right)
+ \int_{\Omega} |\nabla u_{1}|^{p-2} \langle \nabla u_{2}, \nabla \varphi \rangle \, \omega \, dx + \int_{\Omega} |\nabla u_{2}|^{q-2} \, \langle \nabla u_{2}, \nabla \varphi \rangle \, \nu \, dx \right)
= \int_{\Omega} (f - \tilde{f}) \, \varphi \, dx + \int_{\Omega} \langle G - \tilde{G}, \nabla \varphi \rangle \, dx.$$
(3.6)

In particular, for $\varphi = u_1 - u_2$, we obtain

(i) Since $2 \le q and by Lemma 2.4 (b), there exist two positive constants <math>\alpha_p$ and α_q such that

$$\begin{split} & \int_{\Omega} \left(\left| \Delta u_1 \right|^{p-2} \Delta u_1 - \left| \Delta_2 \right|^{p-2} \Delta u_2 \right) \Delta (u_1 - u_2) \, \omega \, dx \\ & \geq \alpha_p \int_{\Omega} \left(\left| \Delta u_1 \right| + \left| \Delta u_2 \right| \right)^{p-2} \left| \Delta u_1 - \Delta u_2 \right|^2 \omega \, dx \\ & \geq \alpha_p \int_{\Omega} \left| \Delta u_1 - \Delta u_2 \right|^{p-2} \left| \Delta u_1 - \Delta u_2 \right|^2 \omega \, dx = \alpha_p \int_{\Omega} \left| \Delta (u_1 - u_2) \right|^p \omega \, dx, \end{split}$$

and analogously

$$\int_{\Omega} \left(\left| \Delta u_1 \right|^{q-2} \Delta u_1 - \left| \Delta u_2 \right|^{q-2} \Delta u_2 \right) \Delta (u_1 - u_2) \, \nu \, dx \geq \alpha_q \int_{\Omega} \left| \Delta (u_1 - u_2) \right|^q \nu \, dx \geq 0.$$

(ii) Since $2 \le q and by Lemma 2.4 (b), there exit two positive constants <math display="inline">\tilde{\alpha}_p$ and $\tilde{\alpha}_q$ such that

$$\int_{\Omega} \left(\left| \nabla u_{1} \right|^{p-2} \left\langle \nabla u_{1}, \nabla (u_{1} - u_{2}) \right\rangle - \left| \nabla u_{2} \right|^{p-2} \left\langle \nabla u_{2}, \nabla (u_{1} - u_{2}) \right\rangle \right) \omega \, dx$$

$$= \int_{\Omega} \left\langle \left| \nabla u_{1} \right|^{p-2} \nabla u_{1} - \left| \nabla u_{2} \right|^{p-2} \nabla u_{2}, \nabla (u_{1} - u_{2}) \right\rangle \omega \, dx$$

$$\geq \tilde{\alpha}_{p} \int_{\Omega} \left(\left| \nabla u_{1} \right| + \left| \nabla u_{2} \right| \right)^{p-2} \left| \nabla u_{1} - \nabla u_{2} \right|^{2} \omega \, dx$$

$$\geq \tilde{\alpha}_{p} \int_{\Omega} \left| \nabla u_{1} - \nabla u_{2} \right|^{p-2} \left| \nabla u_{1} - \nabla u_{2} \right|^{2} \omega \, dx = \tilde{\alpha}_{p} \int_{\Omega} \left| \nabla (u_{1} - u_{2}) \right|^{p} \omega \, dx,$$

and analogously,

$$\int_{\Omega} \left(|\nabla u_1|^{q-2} \langle \nabla u_1, \nabla (u_1 - u_2) \rangle - |\nabla u_2|^{q-2} \langle \nabla u_2, \nabla (u_1 - u_2) \rangle \right) \nu \, dx$$

$$\geq \tilde{\alpha}_q \int_{\Omega} |\nabla (u_1 - u_2)|^q \, \nu \, dx \geq 0.$$

(iii) By Remark 3.1 (i) we have

$$\left| \int_{\Omega} (f - \tilde{f}) (u_1 - u_2) dx + \int_{\Omega} \langle G - \tilde{G}, \nabla (u_1 - u_2) \rangle dx \right|$$

$$\leq \left(C_{\Omega} \left\| \frac{f - \tilde{f}}{\omega} \right\|_{L^{p'}(\Omega, \omega)} + C_{p, q} \left\| \frac{|G - \tilde{G}|}{\nu} \right\|_{L^{q'}(\Omega, \nu)} \right) \|u_1 - u_2\|_{X}.$$

Hence, with $\gamma = \min\{\alpha_p, \tilde{\alpha}_p\}$, we obtain in (3.6)

$$\gamma \|u_{1} - u_{2}\|_{X}^{p} \leq \alpha_{p} \int_{\Omega} |\Delta(u_{1} - u_{2})|^{p} \omega \, dx + \tilde{\alpha}_{p} \int_{\Omega} |\nabla(u_{1} - u_{2})|^{p} \omega \, dx
\leq \left(C_{\Omega} \left\| \frac{f - \tilde{f}}{\omega} \right\|_{L^{p'}(\Omega, \omega)} + C_{p, q} \left\| \frac{|G - \tilde{G}|}{\nu} \right\|_{L^{q'}(\Omega, \nu)} \right) \|u_{1} - u_{2}\|_{X}.$$

Therefore,

$$||u_1 - u_2||_X \le \frac{1}{\gamma^{1/(p-1)}} \left(C_{\Omega} \left\| \frac{f - \tilde{f}}{\omega} \right\|_{L^{p'}(\Omega, \omega)} + C_{p,q} \left\| \frac{|G - \tilde{G}|}{\nu} \right\|_{L^{q'}(\Omega, \nu)} \right)^{1/(p-1)}.$$

Corollary 3.4. Assume $2 \le q . Let the assumptions of Theorem 3.2 be fulfilled, and let <math>\{f_m\}$ and $\{G_m\}$ be sequences of functions satisfying $\frac{f_m}{\omega} \to \frac{f}{\omega}$ in $L^{p'}(\Omega,\omega)$ and $\left\|\frac{|G_m-G|}{\nu}\right\|_{L^{q'}(\Omega,\nu)} \to 0$ as $m \to \infty$. If $u_m \in X$ is a solution of the problem

$$(P_m) \left\{ \begin{array}{cc} Lu_m(x) = f_m(x) - \operatorname{div}(G_m(x)), & \text{in } \Omega, \\ u_m(x) = \Delta u_m(x) = 0, & \text{in } \partial\Omega, \end{array} \right.$$

then $u_m \rightarrow u$ in X and u is a solution of problem (P).

Proof. By Corollary 3.3 we have

$$\|u_{m} - u_{r}\|_{X} \leq \frac{1}{\gamma^{1/(p-1)}} \left(C_{\Omega} \left\| \frac{f_{m} - f_{r}}{\omega} \right\|_{L^{p'}(\Omega, \omega)} + C_{p, q} \left\| \frac{|G_{m} - G_{r}|}{\nu} \right\|_{L^{q'}(\Omega, \nu)} \right)^{1/(p-1)}.$$

Therefore $\{u_m\}$ is a Cauchy sequence in X. Hence, there is $u \in X$ such that $u_m \to u$ in X. We have that u is a solution of problem (P). In fact, since u_m is a solution of (P_m) , for all $\varphi \in X$ we have

$$\int_{\Omega} |\Delta u|^{p-2} \Delta u \, \Delta \varphi \, \omega \, dx + \int_{\Omega} |\Delta u|^{q-2} \Delta u \, \Delta \varphi \, \nu \, dx \\
+ \int_{\Omega} |\nabla u|^{p-2} \langle \nabla u, \nabla \varphi \rangle \, \omega \, dx + \int_{\Omega} |\nabla u|^{q-2} \langle \nabla u, \nabla \varphi \rangle \, \nu \, dx \\
= \int_{\Omega} \left(|\Delta u|^{p-2} \Delta u - |\Delta_m|^{p-2} \Delta u_m \right) \Delta \varphi \, \omega \, dx \\
+ \int_{\Omega} \left(|\Delta u|^{q-2} \Delta u - |\Delta u_m|^{q-2} \Delta u_m \right) \Delta \varphi \, \nu \, dx \\
+ \int_{\Omega} \left(|\nabla u|^{q-2} \langle \nabla u, \nabla \varphi \rangle - |\nabla u_m|^{p-2} \langle \nabla u_m, \nabla \varphi \rangle \right) \omega \, dx \\
+ \int_{\Omega} \left(|\nabla u|^{q-2} \langle \nabla u, \nabla \varphi \rangle - |\nabla u_m|^{q-2} \langle \nabla u_m, \nabla \varphi \rangle \right) \nu \, dx \\
+ \int_{\Omega} |\Delta u_m|^{p-2} \langle \nabla u, \nabla \varphi \rangle - |\nabla u_m|^{q-2} \langle \nabla u_m, \nabla \varphi \rangle \right) \nu \, dx \\
+ \int_{\Omega} |\Delta u_m|^{p-2} \Delta u_m \, \Delta \varphi \, \omega \, dx + \int_{\Omega} |\Delta u_m|^{q-2} \Delta u_m \, \Delta \varphi \, \nu \, dx \\
+ \int_{\Omega} |\nabla u_m|^{p-2} \langle \nabla u_m, \nabla \varphi \rangle \, \omega \, dx + \int_{\Omega} |\nabla u_m|^{q-2} \langle \nabla u_m, \nabla \varphi \rangle \, \nu \, dx \\
= I_1 + I_2 + I_3 + I_4 + \int_{\Omega} f_m \varphi \, dx + \int_{\Omega} \langle G_m, \nabla \varphi \rangle \, dx \\
= I_1 + I_2 + I_3 + I_4 + \int_{\Omega} f \varphi \, dx + \int_{\Omega} \langle G, \nabla \varphi \rangle \, dx \\
+ \int_{\Omega} (f_m - f) \varphi \, dx + \int_{\Omega} \langle G_m - G, \nabla \varphi \rangle \, dx, \tag{3.7}$$

where

$$\begin{split} I_1 &= \int_{\Omega} \left(|\Delta u|^{p-2} \Delta u - |\Delta u_m|^{p-2} \Delta u_m \right) \Delta \varphi \, \omega \, dx, \\ I_2 &= \int_{\Omega} \left(|\Delta u|^{q-2} \Delta u - |\Delta u_m|^{q-2} \Delta u_m \right) \Delta \varphi \, \nu \, dx, \\ I_3 &= \int_{\Omega} \left(|\nabla u|^{p-2} \langle \nabla u, \nabla \varphi \rangle - |\nabla u_m|^{p-2} \langle \nabla u_m, \nabla \varphi \rangle \right) \omega \, dx, \\ I_4 &= \int_{\Omega} \left(|\nabla u|^{q-2} \langle \nabla u, \nabla \varphi \rangle - |\nabla u_m|^{q-2} \langle \nabla u_m, \nabla \varphi \rangle \right) \nu \, dx. \end{split}$$

We have that:

(1) By Lemma 2.4 (a) there exists $C_p > 0$ such that

$$|I_{1}| \leq \int_{\Omega} ||\Delta u|^{p-2} \Delta u - |\Delta u_{m}|^{p-2} \Delta u_{m}| |\Delta \varphi| \omega dx$$

$$\leq C_{p} \int_{\Omega} |\Delta u - \Delta u_{m}| (|\Delta u| + |\Delta u_{m}|)^{p-2} |\Delta \varphi| \omega dx.$$

Let r = p/(p-2). Since $\frac{1}{p} + \frac{1}{p} + \frac{1}{r} = 1$, by the Generalized Hölder inequality we obtain

$$|I_{1}| \leq C_{p} \left(\int_{\Omega} |\Delta u - \Delta u_{m}|^{p} \omega \, dx \right)^{1/p} \left(\int_{\Omega} |\Delta \varphi|^{p} \omega \, dx \right)^{1/p} \left(\int_{\Omega} (|\Delta u| + |\Delta u_{m}|)^{(p-2)r} \omega \, dx \right)^{1/r} \leq C_{p} ||u - u_{m}||_{X} ||\varphi||_{X} ||\Delta u| + |\Delta u_{m}||_{L^{p}(\Omega,\omega)}^{(p-2)}.$$

Now, since $u_m \to u$ in X, then exists a constant M > 0 such that $||u_m||_X \leq M$. Hence,

$$\||\Delta u| + |\Delta u_m|\|_{L^p(\Omega,\omega)} \le \|u\|_X + \|u_m\|_X \le 2M. \tag{3.8}$$

Therefore,

$$|I_1| \le C_p (2M)^{p-2} ||u - u_m||_X ||\varphi||_X$$

= $C_1 ||u - u_m||_X ||\varphi||_X$.

Analogously, there exists a constant C_3 such that

$$|I_3| \leq C_3 ||u - u_m||_X ||\varphi||_X$$
.

(2) By Lemma 2.4 (a) there exists a positive constant C_q such that

$$|I_{2}| \leq \int_{\Omega} ||\Delta u|^{q-2} \Delta u - |\Delta u_{m}|^{q-2} \Delta u_{m}| |\Delta \varphi| \nu dx$$

$$\leq C_{q} \int_{\Omega} |\Delta u - \Delta u_{m}| (|\Delta u| + |\Delta u_{m}|)^{q-2} |\Delta \varphi| \nu dx.$$

Let s = q/(q-2) (if $2 < q < p < \infty$). Since $\frac{1}{q} + \frac{1}{q} + \frac{1}{s} = 1$, by the Generalized Hölder inequality we obtain

$$\begin{split} &|I_{2}|\\ &\leq C_{q}\left(\int_{\Omega}|\Delta u - \Delta u_{m}|^{q} \nu \, dx\right)^{1/q}\left(\int_{\Omega}|\Delta \varphi|^{q} \nu \, dx\right)^{1/q}\left(\int_{\Omega}(|\Delta u| + |\Delta u_{m}|)^{(q-2)s} \nu \, dx\right)^{1/s}\\ &= C_{q}\left\|\Delta u - \Delta u_{m}\right\|_{L^{q}(\Omega, \nu)}\left\|\Delta \varphi\right\|_{L^{q}(\Omega, \nu)}\left\||\Delta u| + |\Delta u_{m}|\right\|_{L^{q}(\Omega, \nu)}^{q-2}. \end{split}$$

Now, by Remark 3.1 (i) and (3.8) we have

$$|I_{2}| \leq C_{q} C_{p,q} \|\Delta u - \Delta u_{m}\|_{L^{p}(\Omega,\omega)} C_{p,q} \|\Delta \varphi\|_{L^{p}(\Omega,\omega)} C_{p,q}^{q-2} \||\Delta u| + |\Delta u_{m}||_{L^{p}(\Omega,\omega)}^{q-2}$$

$$\leq C_{q} C_{p,q}^{q} \|u - u_{m}\|_{X} \|\varphi\|_{X} (2M)^{q-2}$$

$$= C_{2} \|u - u_{m}\|_{X} \|\varphi\|_{X}.$$

Analogously, there exists a positive constant C_4 such that

$$|I_4| \le C_4 \|u - u_m\|_X \|\varphi\|_X.$$

In case q=2, we have $|I_2|, |I_4| \leq C_{p,2}^2 \|u-u_m\|_X \|\varphi\|_X$. Therefore, we have $I_1, I_2, I_3, I_4 \rightarrow 0$ when $m \rightarrow \infty$.

(3) We also have

$$\left| \int_{\Omega} (f_m - f) \varphi \, dx + \int_{\Omega} \langle G_m - G, \nabla \varphi \rangle \, dx \right|$$

$$\left(C_{\Omega} \left\| \frac{f_m - f}{\omega} \right\|_{L^{p'}(\Omega, \omega)} + C_{p, q} \left\| \frac{|G_m - G|}{\nu} \right\|_{L^{q'}(\Omega, \nu)} \right) \|\varphi\|_{X}$$

$$\to 0,$$

when $m \rightarrow \infty$.

Therefore, in (3.7), we obtain when $m \rightarrow \infty$ that

$$\int_{\Omega} |\Delta u|^{p-2} \Delta u \, \Delta \varphi \, \omega \, dx + \int_{\Omega} |\Delta u|^{q-2} \Delta u \, \Delta \varphi \, \nu \, dx
+ \int_{\Omega} |\nabla u|^{p-2} \langle \nabla u, \nabla \varphi \rangle \, \omega \, dx + \int_{\Omega} |\nabla u|^{q-2} \langle \nabla u, \nabla \varphi \rangle \, \nu \, dx
= \int_{\Omega} f \, \varphi \, dx + \int_{\Omega} \langle G, \nabla \varphi \rangle \, dx,$$

i.e., u is a solution of problem (P).

Example Let
$$\Omega = \{(x,y) \in \mathbb{R}^2 : x^2 + y^2 < 1\}$$
, $w(x,y) = (x^2 + y^2)^{-1/2}$ ($\omega \in A_4$, $p = 4$ and $q = 3$), $\nu(x,y) = (x^2 + y^2)^{-1/3}$, $f(x,y) = \frac{\cos(xy)}{(x^2 + y^2)^{1/6}}$ and $G(x,y) = \left(\frac{\sin(x+y)}{(x^2 + y^2)^{1/6}}, \frac{\sin(xy)}{(x^2 + y^2)^{1/6}}\right)$. By Theorem 3.2 , the problem
$$\begin{cases} \Delta \left[(x^2 + y^2)^{-1/2} |\Delta u|^2 \Delta u + (x^2 + y^2)^{-1/3} |\Delta u| \Delta u \right] \\ -\operatorname{div} \left[(x^2 + y^2)^{-1/2} |\nabla u|^2 \nabla u + (x^2 + y^2)^{-1/3} |\nabla u| \nabla u \right] \\ = f(x) - \operatorname{div}(G(x)), & \text{in } \Omega \\ y(x) = \Delta y = 0 & \text{in } \partial \Omega \end{cases}$$

has a unique solution $u \in W^{2,4}(\Omega, \omega) \cap W_0^{1,4}(\Omega, \omega)$.

References

- [1] A.C.Cavalheiro, Existence and uniqueness of solutions for some degenerate nonlinear Dirichlet problems, Journal of Applied Analysis, 19 (2013), 41-54.
- [2] M. Chipot, Elliptic Equations: An Introductory Course, Birkhäuser, Berlin (2009).
- [3] P. Drábek, A. Kufner and F. Nicolosi, Quasilinear Elliptic Equations with Degenerations and Singularities, Walter de Gruyter, Berlin (1997).
- [4] E. Fabes, C. Kenig, R. Serapioni, The local regularity of solutions of degenerate elliptic equations, Comm. PDEs 7 (1982), 77-116.
- [5] J. Garcia-Cuerva and J.L. Rubio de Francia, Weighted Norm Inequalities and Related Topics, North-Holland Mathematics Studies 116, (1985).
- [6] D.Gilbarg and N.S. Trudinger, Elliptic Partial Equations of Second Order, 2nd Ed., Springer, New York (1983).
- [7] J. Heinonen, T. Kilpeläinen and O. Martio, Nonlinear Potential Theory of Degenerate Elliptic Equations, Oxford Math. Monographs, Clarendon Press, (1993).
- [8] B. Muckenhoupt, Weighted norm inequalities for the Hardy maximal function, Trans. Am. Math. Soc. 165 (1972), 207-226.
- [9] E. Stein, Harmonic Analysis, Princenton University Press, New Jersey (1993).
- [10] A. Torchinsky, Real-Variable Methods in Harmonic Analysis, Academic Press, San Diego, (1986).
- [11] B.O. Turesson, Nonlinear Potential Theory and Weighted Sobolev Spaces, Lecture Notes in Mathematics, vol. 1736, Springer-Verlag, (2000).
- [12] E. Zeidler, Nonlinear Functional Analysis and its Applications, Vol.II/B, Springer-Verlag, New York (1990).