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Abstract

The reciprocal sums of even and odd terms in the Pell sequence are
considered. New interesting identities involving the partial finite sums
of the even-indexed and the odd-indexed reciprocal Pell numbers are
derived.

1 Introduction

The Pell sequence is a sequence of integers satisfying the second-order linear
recurrence relation

Ppio=2Pyi1+P,, Py=0, P =1.

The integer P, is called the nth Pell number. Solving this recurrence gives us
a simple formula for the nth Pell number as
1 n n
Po=—[(1+v2) - (1-v2)].
2V2
The Pell sequence is closely related to the Fibonacci sequence, which is defined

by

Fpio=Fni1+F, Fy=0, Fy=1.
The integer F, is called the nth Fibonacci number. The reciprocal sums of the
Fibonacci numbers and the Pell numbers have been studied increasingly over a
decade; see for example [1 - 9]. In 2009, Ohtsuka and Nakamura [5] established
some results about the infinite sums of the reciprocal Fibonacci numbers.
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Theorem 1.1. For alln > 2,
e} 1 -1 F . .
Z 1 _ n—2, zfnzs even, (1.1)
= Fy, F,_o—1, ifnis odd,

where || denotes the floor function.

Holliday and Komatsu [2], and independently, Zhang ang Wang [9] also
proved interesting identities for the infinite sums of the Pell numbers.

Theorem 1.2.
-1
i 1 _JPuo1+ Paa, if nis even and n > 2;
= b | P4 Pas— 1, if nis odd and n > 1,

provided that P_1 = P; = 1.
Wang and Wen [6] strengthened (1.1) to finite partial sums.
Theorem 1.3. (i) For alln >4,
2n -1
1
(3] |-re
k=n k
(i) If m > 3 and n > 2, then
mn -1
Z i ) Fuo, if nis even;
= Fk | Fa_o—1, ifnis odd.

Recently, Wang and Zhang [7] have obtained some interesting results about
the reciprocal sums of the Fibonacci numbers with even or odd indexes.

Theorem 1.4. We have

-1
%L ) Fon-a, ifm=2andn > 3; (1.2)
ng B FQn_l—l, zfmZBananl .

k=n

Theorem 1.5. For alln > 1 and m > 2, we have

(Z F21_1> = Fyp_s. (1.3)
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It is thus natural to ask whether there exist similar formulae for the Pell
sequence. In 2017, Choo [1] proved, among other things, the following identities
related to the finite sums of reciprocal Pell numbers. If n > 2, then

(
[

2n

D

k=n

m

D

k=n

1
Py

1

k

i)

)

If n > 2 with n even and m > 2n, then

=P,—P,_,. (1.4)

=P, —P,_1. (1.5)

If n > 1 with n odd and m > 3n, then

b

k=n

1

o (1.6)

—1
) =P, - P, -1

Unlike the results of Choo, we investigate here the partial finite sums of re-
ciprocal Pell numbers of odd and even indexes. Although, the main results
proved here and those of Choo seem very close and they are proved by similar
elementary methods, they seem to be quite independent of one another.

2 Basic identities

In this section, we collect some identities involving the Pell numbers that will
be used in our main results. They are similar to identities of the Fibonacci
numbers and can be proved by induction. Since the proofs are similar, we only
give detailed proofs for Lemmas 2.1, 2.3, and 2.6.

Lemma 2.1. For any positive integer n, we have

P? P, 1P,y = (—1)""L (2.1)

Proof. We proceed by induction on n. It is clearly true for n = 1. Assuming
the result holds for any positive integer k, we will show that the equation (2.1)
is true for k + 1. We have

P2 — PuPris = (2P + Py_1)” — Py 2Pey1 + Py)
=A4P? + 4P, 1Py + P}, — 2Py Py — P?
=3P2 + Py_1(2Py + Pr_1) — 2P (Pry1 — Pr_1)
=3P? 4 Py 1Py, — 4P
=—P2+ Py1Ppa

(=1)*.
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O
Lemma 2.2. For any positive integer n > 2, we have
P2 P, 3P, 0 =4(-1)" (2.2)
Lemma 2.3. For any positive integers a and b, we have
PoPy+ Poy1 Poy1i = Paypya. (2.3)

Proof. Let a be a positive integer. We proceed by induction on b. For b = 1,
we have
PaP1+Pa+1P2:Pa+2Pa+1:Pa+2-

Now, let k& be any positive integer. Assume that the equation (2.3) holds for
any positive integer b < k. We get
PyPyi1 + Pov1Pio = Po (2P + Py—1) + Pat1 (2Pg41 + Py)
=2P, P, + P,Pi_1+ 2P, 1Pyi1+ Poy1 Py
=2 (PP + Pav1Prt1) + (PaPr—1+ Pat1Pr)
=2Pstk+1 + Patr

= Fa+k+2-
O
Remark 2.4. Replacing a by a — 1 in (2.3), we get
Py 1Py + P, Pyy1 = Paqy,
which implies that
Poyp 2 Py Pyi1 > P D, (2.4)
Lemma 2.5. For any positive integer n, we have
2Pop1 = Ppi1Poyo — PPy (2.5)

Proof. This follows from setting a =n —1 and b = n+1 in (2.3) and straight-
forward calculation. O

Lemma 2.6. Let a and b be two integers with a > b > 0. If n > a, then
Pn+aPn—a—1 - Pn+an—b—1 = (_1)n_aPa+b+1Pa—b- (26)
Proof. We proceed by induction on n. For n = a + 1, we have

PayyraPary—a—1 — Plar )+ Par1)—b-1 = Pea+1P0 — Patbo+1Pa—s
= - a+b+1Pa—b
= (- =P, 1 Py,
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Assume that the result holds for n > a. Applying (2.3) twice and using the

induction hypothesis, we get

Pty +aPnt1)—a—1 — Pt 1)+6Pm+1)—b-1
- n+a+1Pn—a - n+b+1Pn—b

= (Pn+a+1Pn—a + Pn—i—aPn—a—l) - Pn+b+1Pn—b - Pn+aPn—a—1

- P2n - n+b+1Pn—b - Pn+aPn—a—1
= n+an—b—1 - Pn+aPn—a—1
= (1)t P, Py

O

Before ending this section, we establish an inequality which forms part of

the proof of one of our main results.

Lemma 2.7. Let n be a positive integer. If n > 3, then

2n

1 < Z 4
Pypiyo — Py Py, (Pog — Pog—2) (Pogt2 — Pag)

k=n
Proof. Setting a = 2 and b = 0, and replacing n by 2n in (2.6), we get
Pop_3Popi2 — Py 1P, = 10.
Applying (2.5) and (2.8), we obtain

Psp—3 (Pant2 — Pan) = 2Pop_3Puant1
= Pop—3(Pont1Pont2 — Pon—1Poy)
= Pony1 (Pan—1Popn + 10) — Pop_3Pon_1Pap

(2.7)

(2.8)

= Pop_1P2nPony1 — (Pon—3Pan—1Pon, — 10P2,11) .

Setting a = 1 and b = 0, and replacing n by 2n in (2.6), we get

Pop_9Popni1 — Poyy_ 1Py, = —2.

(2.9)

For n > 3, we know that Py,_3 > 5 and Ps,_o > 12. Then applying (2.9), we

obtain

Pop—3Poy_1P2yp, = Pop_3(Pan—2Popi1 +2) > 60Pay11 + 10 > 10Poy 1.

Therefore,

4Py, 3 (Pint2 — Pin) < 4Poy—1PopPony1 = Pop (Pan — Pan—2) (Pant2 — Pay),
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which is equivalent to

4 (Pan+2 — Pun) < 1
Poy (Pon, — Pop—2) (Pant2 — Pap)  Papg’

Hence,

2n

1 Z 4
Pypyo — Pyy Poi (Pog — Pag—2) (Pog+2 — Poy)

k=n

1 1 2 4 (Pypyo — Pin)

Pint2 — Pin Pinyo — Pin = Pak (Pay — Pog—2) (Pogt2 — Pak)

1 1 2 4 (Pypi2 — Pyy)

> _
Pynyo — Py Papyo — Pan = Poy, (Pap, — Pan—2) (Pany2 — Pay)

2n

1 1 1
Pinyo = Pain Pingo — Pan = Pan—3

_ 1 (Pgn_g —n— 1)
Pypyo — Py Pop_3 .

It is not hard to see that Ps,_3 > n + 1 for n > 3, which completes the proof.
O

3 Main Results

We begin this section with the partial finite sums of even-indexed reciprocal
Pell numbers.

Theorem 3.1. For all positive integers n > 3, we have
2n 1 -1
(Z P—) = Py, — Py _o. (3.1)
ok

Proof. Equation (3.1) is equivalent to

2n -1
1
Py, — Py, 0 < — | <Py Pyyot1,
2 2 2 <§P2k> 2 2 2
or
1 g 1

- < > <55 -
Pyp — Pop_a+1 h Py, = Pop — Poy o

=n
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By elementary calculation and (2.2), for k¥ > 1 we have

1 1 1
Py — Pop2+1  Pop,  Popyo— Porp+1

Pop (Popy2 — 2Pop + Poj o) — (Pop, — Pop 2+ 1) (Pogy2 — Pop + 1)

Pop (Por, — Pop—2+ 1) (Pagy2 — Por + 1)
—P} + Pog_oPopio+ Pog—o — Pojio— 1
Pop (Por, — Po—2 4 1) (Pagy2 — Por + 1)
—4(=1)%k 4+ Pyp_g — Pojyo — 1
Pop (Po, — Po o+ 1) (Pagy2 — Pop + 1)
P o0 — Popy2—5
Pop (Po, — Po o+ 1) (Pagy2 — Pop + 1)

1 1 1
=—a +
Py, (sz —Poro+1  Popyo— Pop+ 1>
3
Po (Po, — Pog—2+ 1) (Pagy2 — Pop + 1)

Summing from n to 2n gives

2n

1 Z 1 1
Pop = Pon—o+1 = Por Pinyz — Pan +1

=n
2n

1 1 1
S — +
;1 Py, (sz —Poro+1  Popyo— Pop + 1>
3
Po (Pag, — Pog—o+ 1) (Pagy2 — Pop +1)°

Then
TR
= Poy,  Pop—Papo+1  Pipio— Piy+1

2n

1 1 1
+]§1P—2k (sz —Pop_o+1 + Pojio — Poy, + 1>
. 3
Pop (Por, — Pop—2 4 1) (Pagy2 — Por + 1)
1 1 1
Pon—Pon 2+ 1  Popa—Pimtl | Pom (Pyp — Pop_a+ 1)

>
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It follows from (2.3) that

Pypyo — Pyn +1> Pypyo — Pan
= (PonPons1 + Poni1Pony2) — (Pen—1Pon + PonPong1)
= Popnt1Pont2 — Pon—1Pon
> Py (Pong2 — Pon—1)
= Pon (2P2n41 + Pop — Pay 1)
> Py (Pon — Pop 2+ 1),

which implies that

1 1
< .
Pipyo —Pin+1 =~ Pop(Pap — Pap_o+1)
Therefore,
2n
1 1
e T —— 3.3
= Pox Pan — Pano+1 (3:3)
Again, by elementary calculation and (2.2), for k > 1 we have
1 1 1
Pop, — Pop_o  Por,  Popgo— Poy
_ Poi, (Pogt2 — 2Pog + Pog—2) — (Pog — Pog—2) (Pak+2 — Poy)
Poi, (Pog — Pag—2) (Pog+2 — Poy)
_ Poj_oPoyio — P2,
Poi, (Pog — Pag—2) (Pagt2 — Pag)
—4
= (3.4)

 Poy (Pog, — Pog—2) (Pagyo — Pay)’
Summing from n to 2n gives

2n 2n

Y = —
Py — Pop_2 Por Pany2 — Pan = Pok (Pag — Pog—2) (Poy2 — Pag)

k=n =n
Then from (2.7), we get

2n 2n

1 1 1 4
PR : 5>
= Py Pa—Pans  Pinyo— Pan = Por (Pok — Par—2) (Paky2 — Par)
1

< =\ 3.5
Pop — Pop_o (3:5)

Combing (3.3) and (3.5), the inequalities in (3.2) follow. O
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Theorem 3.2. Let m and n be positive integers. If m > 3 and n > 1, we have

mn -1
> 1 = Py, — Popo— 1. (3.6)
Pyy,

k=n

Proof. Equation (3.6) is equivalent to

mn -1
Pop — P2 —1< (Z —> < Pop — Poy_o,
k=n

or
mn

1 1 1
—_— < — < =
Pop — Pop_o = Py, = Pop— Pop—2—1

By elementary calculation and (2.2), for k > 1, we get
1 1 1

Py — Pop2—1  Pop,  Popyo— Pop—1
P (Pagy2 — 2Pop + Po—2) — (Por, — Pog—2 — 1) (Pagy2 — Por — 1)
Pop (Por, — Po—2 — 1) (Pagy2 — Por — 1)
=P} + Poy 2P0 — Pop_o+ Pojgo— 1
Py (Pogp — P2 — 1) (Paggo — Por, — 1)
Popio— Pop—2—5
Poi (Pog — Pog—o — 1) (Paogyo — Pop — 1)

Since
Pogyo = 2Py + Pop = 4Pop + 4Pog—1+ Pag—2 > Pop—2+ 5,
we have 1 1 1
Po Pz 1 Pu Papy Py 1 (3:8)
Summing from n to mn gives
1 — 1 1
o P s 1 2Py Pomnis P 17"

which implies that

% 1 _ 1 1
= Py,  Pop—Popo—1 Poppio— Popyy — 1
1

< =\
Pop — Pop_g —1
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On the other hand, it follows from (3.4) that

mn mn

—-> 5 > —
Py — Pop_2 Por - Pamny2 = Pamn = Pk (Paoy, — Pog—2) (Pogt2 — Pak)

k=n

Then

mn mn

1 1 1 4
IR . 3
Py, Pop—Poy—o  Pompio— Pomn h Poi (Pa, — Pog—2) (Pogt2 — Pag)

k=n =n

1 1 1

> — + .
Py — Pon—s Ponio— Pomn Pon (Pap — Pon—2) (Pant2 — Poy)

For m > 3, applying (2.4) gives
2Pomn41 = 2Psp11 > 4Py > 4Py Poy1 > 4P, Poy Pop 1 > 4Poy 1P Payga,

and so
Pornt2 — Pomn > Pap (Pan — Pap—2) (Papt2 — Pan)

which is implies that

1 1
> . 3.10
Pop (Pop — Pan—2) (Pant2 — Pan) =~ Pamn+t2 — Pomn (3:10)
Thus,
—_> 3.11
,;1 Py, Pop — Poy o (3.11)
Combing (3.9) and (3.11) yields the desired result (3.7). O

Corollary 3.3. For any positive integer n > 1, we have

-1
=1
(Z P—Qk> =Py, — Py o — 1. (3.12)

k=n

o0
1
Proof. By (3.7) and the monotone convergence theorem, E o converges
2k
k=n
o0

mn 1
and (3.7) also holds when we replace Z O
k=n

— by —_—.
— Por " = P

Remark 3.4. Note that Py, — Pa,—2 = 2P5, 1. Hence, equations (3.1), (3.6),
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and (3.12) can be rewritten respectively as

-1
Sa) |-
P2k - 2n—1,

k=n

-1
mn 1

— — 2Py, 1 — 1,
(zp%) -

k=n

-1
<1

[— =2P,_1—1.
(zp%) -

k=n

Our results for the Pell numbers are thus similar to (1.2) of the Fibonacci

sequence.

Now, we will consider the partial finite sums of odd-indexed reciprocal Pell

numbers.

Theorem 3.5. Let m and n be positive integers. If m > 2 and n > 2, we have

-1
mn 1
(Z P%_1> =2Py_0=Pop_1— Pay_3.

k=n
Proof. Equation (3.13) is equivalent to

mn

—1
1

2P, 2 < (Z Py ) < 2Py _2+1,
2k—1

k=n

or
mn

1 1 1
B SP
2Py 2 +1 Pop—1 = 2Ps_2

k=n
By elementary calculation and (2.1), for k > 2 we get
1 1 1

2P o+1 Py1 2Py +1
_ Pop 1 (2Poy — 2Pog_2) — (2Pag 2+ 1) (2P + 1)

o Poy_1 (2P2k_2 + 1) (2P2k + 1)
B AP}, | — APy _oPoy — 2Pa_o — 2P, — 1
N Poj—1(2Poj—2+ 1) (2P, + 1)

_ —2P, 9 — 2P, + 3

P 1 (2Pag o+ 1) (2P + 1)

(3.13)

(3.14)
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Summing from n to mn gives

1 % 1 1 _ % —2Pyp_2 — 2Py +3
2Ppn2+1 = Py 2P +1 L~ Poy_1(2Pa—2+ 1)(2Po + 1)
Then
% I 1 L % 2Poy 5 +2Pa — 3
= Pk 2P+ 1 2Py +1 = Po—1(2Pog—2+ 1)(2Po; + 1)
1 1 2P, 2

> - + .
2P0+ 1 2Psyyun+1  Pop_1(2Pap_o+1)(2Ps, + 1)
For m > 2 and n > 2, applying (2.4) gives

2Psy—9(2Pon + 1) > 4Poy_oPopn
> 4Py 2Pun
> 4Py, 2P2nPony1 = 4Pop 2P2n(2P2y + Pop 1)
> 4Py 2Pon 1Pon + 2Pon 2Pon 1+ 2P2n 1Pon + Pon1
= Py 1(2P2p—o + 1)(2P2, + 1).

Thus,
2P, 2 1

> .
Prp1(2P2p—2+1)(2P2p, +1) © 2Py +1

It follows that

> . 3.15
;;1 Pop_1 2Py, _2+1 ( )

Again by elementary calculation and (2.1), for k > 2 we obtain

1 1 1 2Py 1 (Poy — Pop_2) — 4Pog_2Poy
2Py,—2  Pox—1 2P AP oPag 1 Poy
 4PZ_ | —4Py_sPy,
APy 9Py 1Py,
_ 1
 Pop_oPyy_ 1Py,
> 0.

Summing from n to mn gives

mn

1 1 1
2P, 2 h P11 2Py

=n

> 0.
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Then

% 1 _ 1 1
= Pk 2P 2Pamn
1

_ 1
< Y2 (3.16)

Combining (3.15) and (3.16), the desired result (3.14) follows. Moreover, be-
cause of 2Py, _o = Pa,,—1 — Pa,_3, the identity (3.13) is immediate. O
Letting m tend to infinity in Theorem 3.5, we obtain

Corollary 3.6. For any positive integer n > 2, we have

-1

=1

> =2Py,—2 = Pay_1— Pan_s. (3.17)
= Par—
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