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Abstract

We introduce a family 7 consisting of invertible matrices with exactly
one non zero entry in each row and each column. The elements of 7 are
mutually non commuting, and need not be normal or self adjoint. We
consider the operator weighted sequence space 1% (K) with a uniformly
bounded weight sequence B = {By}n>o in 7. For the unilateral shift S
on I%(K), we obtain a complete description of the reducing and minimal
reducing subspaces of S.

1 Introduction

Let K be a separable complex Hilbert space, and [2(K) = &K be the or-
thogonal sum of X, copies of the Hilbert space K with a scalar product defined
by

o0

<fag >:Z <.fn;gn >, f:(anfla-")EZQ(K)ag:(QO;gla-") ElQ(K)'

n=0

Let {e;}$2, be an orthonormal basis for K. Also for i,5 € {0,1,2,...}, let
gij = (0,...,€;,0,...) where e; occurs at the j* position. If Ny := {0,1,2,...}
then {g; j}i jen, is an orthonormal basis for the Hilbert space (?(K).

Let B(K) denote the space of all bounded linear operators on K with norm
defined as ||T|| = supy, =1 [[Tz[| for T € B(K). Let us now consider the
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operator weighted sequence space 1%(K). To define 1% (K), let B = {B,}°,
be a sequence of invertible bounded linear operators on K, and (%(K) :=

{(fo. f1,.) : fi € K and 3572, || B fil|* < oo}. For f = (fi) and g = (g;) in
1%(K), we have

(f.9)B:=Y_(Bifi, Bigi) and || f|5 =>_|Bifil*.
1=0 1=0

As |\giillB = ||Bjesll, so if fi ;== HB p» H then {fi ;}ijen, is an orthonormal
basis for the Hilbert space (%(K). If dim K = 1, then each B,, is a non zero

scalar f3,, and I%(K) is the scalar weighted sequence space I3 defined in [4].

Depending on the weights { B, } we can have different types of operator weighted
sequence spaces (% (K). In this paper we consider the weights B, to belong to
a special subset 7 of B(K) defined as follows:

={T e B(K | T is invertible in B(K) and the matrix of T with respect to
{en}0 has exactly one non zero entry in each row and each column}
We observe the following:
(i) If Ty, T, € 7, then Th'To € T. However, T1 and T» need not commute
and hence elements of 7 are not simultaneously diagonalizable with respect to
fen)ie.
(ii) If T € 7T then its Hilbert adjoint 7 and inverse T~! are also in 7.
(iii) Elements of 7 may not be self adjoint or normal.

The unilateral shift S on 1%(K) is defined as S(fo, fi,-..) = (0, fo, f1,-.-)-

Clearly, S is bounded if and only if sup, ; Hfgifﬁ” < oo. Here we will deter-

mine the minimal reducing subspaces of S on (% (K), where the weight sequence
B ={B,}isin 7. We recall that for a bounded linear operator T" on a Hilbert
space H, a subspace M of H is said to be invariant for T if T(M) C M. If the
subspace M is invariant for both T" and T, then M is said to be reducing for
T. A reducing subspace M is said to be minimal reducing if the only reducing
subspaces contained in M are {0} and M itself.

2 An equivalence relation

We know that the elements of 7 have a specific type of matrix representation
with respect to {e; }ien,. Let T € T and for j € Ny let y; denote the non zero
entry occurring in the j** column of the matrix of T' with respect to {e;}52,.
Then there exists a unique bijective map ¢ : Ny — Ny such that ~; occurs at
the 9(j)*" row. Thus if [a; ;] (i,7 € Np) denotes the matrix of T with respect
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to {e;}32,, then

0, otherwise.

a, ::{ Vi, i =(j);

Thus for each j € No, Tej = 7yjey ;). Also ||T|| = sup; ;-

As we are considering the operator weighted sequence space [%(K), where the

uniformly bounded weight sequence B = {B,,} isin 7, so for each n € Ny there
exists a unique bijective map v, on Ngy such that B, eJ = vj( )% (j), Where 7( )

denotes the unique non zero entry occurring in the j** column of the matrix of
B,.

Definition 2.1. Let B = {B), }nen, be a uniformly bounded sequence of op-
erators in 7, and for each n € Ny let vj(-") denote the unique non zero entry

occurring in the j** column of the matrix of B,,. The weight sequence {B,} is

said to be of type I if for each pair of distinct non negative integers m and n
(k)

there exist some positive integer k such that 7’(’})) 7& In. Otherwise, it is said

to be of type II. Thus {B,} is of type IT if there ex1st distinct non negative

()
integers m and n such that 7(0) = W for every positive integer k.
Yn

Definition 2.2. Let B = {B), }nen, be a uniformly bounded sequence of op-
erators in 7, and for each n € Ny let vj(-") denote the unique non zero entry
occurring in the j** column of the matrix of B,,. Two non negative integers

m and n are said to be B-related (denoted by m ~P n) if for every positive
® W
integer k, we have Z’("—O) = 7— Clearly, ~~ is an equivalence relation on the

set Np.

Definition 2.3. Let B = {B), }nen, be a uniformly bounded sequence of op-
erators in 7. A weight sequence {B,,} of type II is said to be of type III if ~B
partitions Ny into a finite number of equivalence classes.

Remark 2.4. The above definitions are motivated by similar definitions given in
[2]. In fact for dimK = N < oo the two definitions refer to the same idea. In
[2] the minimal reducing subspaces of MY (N > 1) on the space H2 := {f(z) =
Sreoarz® || fIIZ = > wilak]? < 0o} is determined, where w = {wo, w1, ...}
is a sequence of positive numbers. If in the present study we consider dimK =
N, and for each n € Ny define B, = diag(y/Wnn, /UnN11,- - /O )N-1)
then MY on H?2 is unitarily equivalent to the unilateral shift S on I%(K).

Definition 2.5. Let F = )7,y ifio be a non-zero vector in I3(K). The
order of F', denoted as o(F'), is defined as the smallest non negative integer m
such that o, # 0.
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Definition 2.6. If f = ZiGNo a;e; is a non-zero vector in K, then order of f,
denoted as o(f), is defined to be the smallest non negative integer m such that
am # 0.

Definition 2.7. Let Y be a non-zero non-empty subset of K. Then order of
Y, denoted as o(Y), is defined to be the non negative integer m satisfying the
following conditions:

(i) o(f) >m for all f €Y, and

(ii) there exists f € Y such that o(f) = m.

Definition 2.8. Let X be a subset of I%(K) and Lx := {fo : (fo, f1,.-) € X}.
If Lx is a non-zero subset of K, then order of X, denoted as o(X), is defined
as o(Lx).

Definition 2.9. Let B = {B), }nen, be a uniformly bounded sequence of op-
erators in 7. A linear expression F = Y. «a;fio in I3(K) is said to be
B-transparent if for every pair of non-zero scalars o; and o, we have i ~F j.
Definition 2.10. Let B = {B,}nen, be a uniformly bounded sequence of
operators in 7, and S be the unilateral shift on I%(K). Let S be the vector
space of all finite linear combinations of finite products of S and S*. For non-
zero F € 14(K), let SF := {TF : T € S}. Then the closure of SF in [%(K) is
a reducing subspace of S, denoted by Xp. Clearly Xp is the smallest reducing
subspace of [%(K) containing F.

Lemma 2.11. Let B = {B,}nen, be a uniformly bounded sequence of oper-
ators in T, and for each n € Ny let VJ(-") denote the unique non zero entry

occurring in the j*" column of the matriz of B,,. If S is the unilateral shift on
1%(K), then fori,j € Ng , the following will hold:

0 if 5 =0,
() 8 iy = { | o0 .
I ’()_17?_1) fl’,j—l Zf] > 0.
i
GR)
(ii) For any mon negative integer k, (S¥)*Skf; ; = VVT|2 i

Proof. (i) For i € Ny, (SX, f; o) =0 for all X € [%(K), which implies S* f; o =
0.

Next let X = (zo,1,...) € I5(K) and z; = Y 72 alPe, for each j € Ny.
Then for j > 0, we have (SX, f; ;) = ﬁ(Bjxj_l, Bje;) = ozgj_l)|’yfj)|.

&) '

Choosing \; j = | = |, wWe get
i

Aij
)

i o . .
(Bj1zj-1, Bjrei) = ——L—aP V| B;_1ei]|? = al V).

<X7>\i,]'fi,j—1> = |’Y(]_1)| i
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Therefore <SX f1 J> <X, )\i,jfi,j 1> and so S*flj =\ jf’L] 1 fOI"j > 0.

N L GHD
(ii) As S*Sf;; = ] Lo ]S*fu+1 | 1% fi.5, s0 the result holds for k = 1.
(7+ )
Suppose, (S*)"S" f;; = Son fm- holds for n = k. We will show that it also
holds for n = k + 1.
k41 gk+1 7’<j+1) k ok
(SIS fig =" | S (ST SM) fig
Vi
B %(j+1) %(J+1+k)’ o
1,0 G+1) AN
B %(J'H) %(J'H‘i'k)’ %(J"rl) £
L S L AN T N A
k
B %(J+1+ )’ P
o (J) b
Thus, the results holds for all & by induction. O

Lemma 2.12. Let B = {By,} nen, be a uniformly bounded sequence of operators
in T, and for each n € Ny let 7§") denote the unique non zero entry occurring
in the j*" column of the matriz of B,. Let F = Z;’io a; fi,0 be B-transparent
in 1% (K) with o(F) = m. If for each k € No, Fy := ’% >
the following will hold:

(i) (S)'S*F = |25 |°F.

o0
ieo Qi fik, then

. . . 0, if k=0;
(ii) SFy = Frp41 and S*Fy, = ’ NONE

(’c 1)

Fi_q, ifk>0.
(iii) Xp is the closed linear span of {F}, : k € No}.

Proof. Since o(F) = mso o; =0, Vi < m. Let A = {i > m : a; # 0}. Then
(k) (k)
m € A, and for i € A, Z(—O) = ZT(’:—O) for each positive integer k.

(i) Fori € A and positive integer k, by Lemma 2.11(ii) we have

(k)

(Sk)*Skfi,O (0) fl ’ (0) th'

(k) (k)
Thus (Sk)*Sk = (Sk)*Sk(ZieA Oéifi,o) :Zie/\ %) (0) fl ’ (0)
(11) For i, 5 € Ny, Sflj = ’ (7) f¢7j+1, and so

~ ’Yﬁrlj) ’Y( ) ’Y( +1) ( +1) ~
SEy = O Z o Sfige = Z NOMESNON Jiktr = i iz ifikt1 = Fitr:
m iEA iEA Vi
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As S*f¢70 =0so S*F() =0.
~ (k)

For k > 0, S*Fj = ’z;w—ﬁ)

) .

(k)

’Y(k) i
k—1
D

Yoo S fin = %

Zfio o7

fik—1 =

Fr_1

m

(k)
—1)

k
Vo

(iii) By (ii) each Fj € Xp and so the closed linear span{F}, : k € No} is a
non-zero reducing subspace of W contained in Xp. Thus, by minimality of
Xp, we have Xp = closed linear span{Fy : k € Ng}. O

Definition 2.13. Let B = {B,}nen, be a uniformly bounded sequence of
operators in 7, and S be the unilateral shift on I%(K). Let Q1,Qo,... be
the disjoint equivalence classes of Ny under the relation ~”. Consider F' =
Yoicoifio in I5(K). For each k, let g := Y ,;cq, @igio. Dropping those gi
which are zero, the remaining g;’s are arranged as fi, fo, ... in such a way that
for i < j we have o(f;) < o(f;). The resulting decomposition F' = f1 + fo + ...
is called the canonical decomposition of F'. Clearly each f; is B-transparent in
1%(K).

If there exists a finite positive integer n such that F' = f; + fo + - -+ f,, then
F in the above case is said to have a finite canonical decomposition.

Lemma 2.14. Let B = {By}nen, be a uniformly bounded sequence of operators
in T, and for each n € Ny let VJ(-") denote the unique non zero entry occurring
in the j'" column of the matriz of B,,. Let S be the unilateral shift on 1%(K),
and X be a reducing subspace of S in I%(K). If F = > ien, Qifio in X has a
finite canonical decomposition F' = f1 + fo + -+ fn, then each f; is in Xp.

Proof. Let o(f;) = m; so that m; < mg < --- < m, and no two of them are

B-related. For 2 < i < n, as m; ~® m;, and so there exists a positive integer

(kj) (kj)

k; such that 7’?’01) #+ 7”(”3') . Let k; be the smallest positive integer having this
Yy Yy

m i

property.

(k

i)
Let ¢1 := F and for 2 < i <mn, q; := [|7"(”’5')
Ym}

2 o (Ski)*ski}qi_l.
(k) 2
Then gi € Xp V1 <i<mn. Also gn = (Ba...0n) f1, where f; = ’”;’gg)

(ki) 2
’1’5’:?13 for2<i<mn. Aseach 5; #0s0 ¢, € Xp — f1 € Xp.
In a similar way it can be shown that fo,..., f, are also in Xp. ]

3 An Extremal Problem

Theorem 3.1. Let B = { By, }nen, be a uniformly bounded sequence of opera-
tors in T, and S be the unilateral shift on 1%(K). Let X be a non zero reducing
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subspace of S in 1% (K) with o(X) = m. Then the extremal problem

sup{Re oy : F = (fo, f1,-) €X, |[F| <1, fo= Z aie;.}
1€Np

has a unique solution G =3,y @igio € X with |G|l =1 and o(G) = m.

Proof. For F = (fo, f1,...) € X, we define ¢ : X — C as p(F) = «,, where
fo =2 ien, @i€i- Since o(X) = m, so ¢ is a non zero bounded linear functional
on X. From [1], it follows that the extremal problem has a unique solution G
in X such that ||G|| =1, ¢(G) > 0 and

¢(G) =sup{Re o(F) : F € X, ||F|| <1}

=sup{Re apm, : F = (fo, f1,..) € X, |F|| <1, fo= Z aie;.}
i€Np

We claim that G has the form G = )", a; f; 0 with o(G) = m.

If F € X and ||F|| < 1, then by maximality of G we must have Rep(F) < ¢(G).
Now as Rep(G + SF) = ¢(G) VF € X, so we must have |G + SF|| > 1. This
implies that G L SF VF € X. In particular (G, SS*G) = 0 which implies
that S*G = 0. Thus G is of the form G = ZieNO a;fio. Also ¢(G) > 0 and
o(X) = m together imply o(G) = m. O
Note: The function G in Theorem 3.1 will be called the extremal function of
X.

Theorem 3.2. Let B = { By }nen, be a uniformly bounded sequence of opera-
tors in T, and S be the unilateral shift on 1%(K). If the extremal function of a
non-zero reducing subspace of S in 1% (K) has a finite canonical decomposition,
then it must be B-transparent.

Proof. Let X be a non-zero reducing subspace of S in [%(K) and G = Y, o fi.0
be its extremal function with o(G) = m. Let G = g1 + g2 + - - - + gn be the
finite canonical decomposition of G. Each g; is B-transparent and also by
Lemma 2.14, each of them is in X¢. Clearly o(g1) = m and [|¢1]| < |G| = 1.
So by extremality of G, we must have G = g;. Thus G is B-transparent. O

4 Minimal reducing subspaces

Theorem 4.1. Let B = {By}nen, be a uniformly bounded sequence of oper-
ators in T, and for each n € Ny let VJ('H) denote the unique non zero entry

occurring in the j*" column of the matriz of B,. Also let S be the unilat-
eral shift on 1%(K). If X is a minimal reducing subspace of S in 1%(K) and
F=3%.a;fioisin X, then F is B-transparent.
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Proof. Let o(F') = m and, if possible F' is not B-transparent. So we must have

a positive integer k > m such that aj # 0 and k <® m. This means that there
(1) 1)
exists a positive integer ! such that 7(0) %

We define G := (SY)*S'F —

(0) F Clearly, G is in X, and we get

G =(8")S'F —|7(0)| F

—(51)*S (Z i fio) — | 7(0) Z i fi.0)
) %(l) ) ) ’Y
:ZO”W| fw—z il (o)|f1
i=m 71 i=m
o O] )
i Ym
= Z O‘i[W| RO (0) ]fl
i=m+1 Vi

O
Thus, G = >2° . 7ifio, where v; = Ozi[
so G # 0. Moreover, o(F) < o(G) = F ¢ X¢. Hence X¢ is a non-zero
reducing subspace properly contained in X which contradicts the minimality
of the X. Hence F' must be B-transparent. O
As an immediate corollary of the above result we have the following :

_ |;Y(_w§)))|2] Also since v, # 0

Corollary 4.2. The extremal function of a minimal reducing subspace of S in
1%(K) is always B-transparent.

Theorem 4.3. Let B = {By}nen, be a uniformly bounded sequence of op-
erators in T, and S be the unilateral shift on I%(K). Let X be a reducing
subspace of S in I%(K). Then X is minimal if and only if X = Xp where F
1s B-transparent.

Proof. If X is minimal and G is the associated extremal function, then the
reducing subspace X¢ C X. The minimality of X gives X = Xg. Note that
by Corollary 4.2, G is B-transparent.

Conversely, let X = Xp, where F' is B-transparent. Clearly Xr is a reducing
subspace. We claim that Xp is minimal. Let Y be a non zero reducing subspace
of S contained in Xp and H be its extremal function, which is transparent.
Then H € Xp and so by Lemma 2.12(i), H is a scalar multiple of F. In
particular, FF € Y. Thus, Y = X which means that Xz must be minimal. O

Corollary 4.4. Every reducing subspace of S in 1%(K), whose extremal func-
tion has a finite canonical decomposition, contains a minimal reducing subspace.

Proof. The proof follows immediately from Theorem 3.2 and Theorem 4.3. O
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5 Conclusion

Theorem 5.1. Let B = {By}nen, be a uniformly bounded sequence of op-
erators in T, and S be the unilateral shift on I%(K). If the weight sequence
{Bn}nen, is of type I, then Xy, , for n € Ng are the only minimal reducing
subspaces of S in I%(K).

Proof. Lett X be a minimal reducing subspace of S and G be its extremal
function so that X = X¢. Since the weight sequence { B, }nen, is of type I, so
the only transparent functions are f, o for n € Ny and their scalar multiples.
The result now follows from Theorem 4.3. O

Theorem 5.2. Let B = {By,}nen, be a uniformly bounded sequence of oper-
ators in T, and S be the unilateral shift on 1%(K). If {Bn}nen, is of type II,
then S has minimal reducing subspaces other than Xy, ,, n € Ny.

Proof. Since the weight sequence {Bj}nen, is of type II, so we can form a
transparent function F' = ZieNO a; fi.,0 where more than one a;’s are non zero.
Clearly, X is a minimal reducing subspace of S in % (K) such that Xp # X, |
for any n € Ny. O

Theorem 5.3. Let B = { By, }nen, be a uniformly bounded sequence of opera-
tors in T, and S be the unilateral shift on 1% (K). If {Bn}nen, is of type I1I,
then every reducing subspace of S in 1% (K) must contain a minimal reducing
subspace.

Proof. Let X be a reducing subspace of S and G be its extremal function. Since
the weight sequence {By,}nen, is of type III, so G must have a finite canonical
decomposition, say g1 + g2 + ... + gn. By Lemma 2.14, for each 1 <17 < n,
gi € X and so each X, is a minimal reducing subspace of S in [%(K) contained
in X. O
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