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Abstract

We introduce a family T consisting of invertible matrices with exactly
one non zero entry in each row and each column. The elements of T are
mutually non commuting, and need not be normal or self adjoint. We
consider the operator weighted sequence space l2B(K) with a uniformly
bounded weight sequence B = {Bn}∞n=0 in T . For the unilateral shift S
on l2B(K), we obtain a complete description of the reducing and minimal
reducing subspaces of S.

1 Introduction

Let K be a separable complex Hilbert space, and l2(K) = ⊕∞
0 K be the or-

thogonal sum of ℵo copies of the Hilbert space K with a scalar product defined
by

< f, g >=
∞∑
n=0

< fn, gn >, f = (f0 , f1, . . . ) ∈ l2(K), g = (g0, g1, . . . ) ∈ l2(K).

Let {ei}∞i=0 be an orthonormal basis for K. Also for i, j ∈ {0, 1, 2, ...}, let
gi,j := (0, ..., ei, 0, ...) where ei occurs at the jth position. If N0 := {0, 1, 2, ...}
then {gi,j}i,j∈N0 is an orthonormal basis for the Hilbert space l2(K).
Let B(K) denote the space of all bounded linear operators on K with norm
defined as ‖T‖ = sup‖x‖=1 ‖Tx‖ for T ∈ B(K). Let us now consider the
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operator weighted sequence space l2B(K). To define l2B(K), let B = {Bn}∞n=0

be a sequence of invertible bounded linear operators on K, and l2B(K) :=
{(f0, f1, ...) : fi ∈ K and

∑∞
i=0 ‖Bifi‖2 < ∞}. For f = (fi) and g = (gi) in

l2B(K), we have

〈f, g〉B :=
∞∑
i=0

〈Bifi, Bigi〉 and ‖f‖2
B =

∞∑
i=0

‖Bifi‖2.

As ‖gi,j‖B = ‖Bjei‖, so if fi,j := gi,j

‖Bjei‖ , then {fi,j}i,j∈N0 is an orthonormal
basis for the Hilbert space l2B(K). If dimK = 1, then each Bn is a non zero
scalar βn, and l2B(K) is the scalar weighted sequence space l2β defined in [4].

Depending on the weights {Bn} we can have different types of operator weighted
sequence spaces l2B(K). In this paper we consider the weights Bn to belong to
a special subset T of B(K) defined as follows:
T := {T ∈ B(K)

∣∣ T is invertible in B(K) and the matrix of T with respect to
{en}∞0 has exactly one non zero entry in each row and each column}
We observe the following:
(i) If T1, T2 ∈ T , then T1T2 ∈ T . However, T1 and T2 need not commute
and hence elements of T are not simultaneously diagonalizable with respect to
{en}∞0 .
(ii) If T ∈ T then its Hilbert adjoint T ∗ and inverse T−1 are also in T .
(iii) Elements of T may not be self adjoint or normal.

The unilateral shift S on l2B(K) is defined as S(f0, f1, ...) = (0, f0, f1, ...).
Clearly, S is bounded if and only if supi,j

‖Bj+1ei‖
‖Bjei‖ < ∞. Here we will deter-

mine the minimal reducing subspaces of S on l2B(K), where the weight sequence
B = {Bn} is in T . We recall that for a bounded linear operator T on a Hilbert
space H , a subspace M of H is said to be invariant for T if T (M) ⊆M . If the
subspace M is invariant for both T and T ∗, then M is said to be reducing for
T . A reducing subspace M is said to be minimal reducing if the only reducing
subspaces contained in M are {0} and M itself.

2 An equivalence relation

We know that the elements of T have a specific type of matrix representation
with respect to {ei}i∈N0 . Let T ∈ T and for j ∈ N0 let γj denote the non zero
entry occurring in the jth column of the matrix of T with respect to {ei}∞i=0.
Then there exists a unique bijective map ψ : N0 → N0 such that γj occurs at
the ψ(j)th row. Thus if [ai,j] (i, j ∈ N0) denotes the matrix of T with respect
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to {ei}∞i=0, then

ai,j :=
{
γj , if i = ψ(j);
0, otherwise.

Thus for each j ∈ N0, Tej = γjeψ(j). Also ‖T‖ = supj |γj |.

As we are considering the operator weighted sequence space l2B(K), where the
uniformly bounded weight sequence B = {Bn} is in T , so for each n ∈ N0 there
exists a unique bijective map ψn on N0 such that Bnej = γ

(n)
j eψn(j), where γ(n)

j

denotes the unique non zero entry occurring in the jth column of the matrix of
Bn.

Definition 2.1. Let B = {Bn}n∈N0 be a uniformly bounded sequence of op-
erators in T , and for each n ∈ N0 let γ(n)

j denote the unique non zero entry
occurring in the jth column of the matrix of Bn. The weight sequence {Bn} is
said to be of type I if for each pair of distinct non negative integers m and n

there exist some positive integer k such that γ(k)
m

γ
(0)
m

�= γ(k)
n

γ
(0)
n

. Otherwise, it is said

to be of type II. Thus {Bn} is of type II if there exist distinct non negative

integers m and n such that γ(k)
m

γ
(0)
m

= γ(k)
n

γ
(0)
n

for every positive integer k.

Definition 2.2. Let B = {Bn}n∈N0 be a uniformly bounded sequence of op-
erators in T , and for each n ∈ N0 let γ(n)

j denote the unique non zero entry
occurring in the jth column of the matrix of Bn. Two non negative integers
m and n are said to be B-related (denoted by m ∼B n) if for every positive

integer k, we have γ(k)
m

γ
(0)
m

= γ(k)
n

γ
(0)
n

. Clearly, ∼B is an equivalence relation on the
set N0.

Definition 2.3. Let B = {Bn}n∈N0 be a uniformly bounded sequence of op-
erators in T . A weight sequence {Bn} of type II is said to be of type III if ∼B
partitions N0 into a finite number of equivalence classes.

Remark 2.4. The above definitions are motivated by similar definitions given in
[2]. In fact for dimK = N < ∞ the two definitions refer to the same idea. In
[2] the minimal reducing subspaces of MN

z (N > 1) on the space H2
w := {f(z) =∑∞

k=0 akz
k : ‖f‖2

w =
∑
wk|ak|2 < ∞} is determined, where w = {w0, w1, . . .}

is a sequence of positive numbers. If in the present study we consider dimK =
N , and for each n ∈ N0 define Bn = diag

(√
wnN ,

√
wnN+1, . . . ,

√
w(n+1)N−1

)
,

then MN
z on H2

w is unitarily equivalent to the unilateral shift S on l2B(K).

Definition 2.5. Let F =
∑

i∈N0
αifi,0 be a non-zero vector in l2B(K). The

order of F , denoted as o(F ), is defined as the smallest non negative integer m
such that αm �= 0.
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Definition 2.6. If f =
∑

i∈N0
αiei is a non-zero vector in K, then order of f ,

denoted as o(f), is defined to be the smallest non negative integer m such that
αm �= 0.

Definition 2.7. Let Y be a non-zero non-empty subset of K. Then order of
Y , denoted as o(Y ), is defined to be the non negative integer m satisfying the
following conditions:
(i) o(f) ≥ m for all f ∈ Y , and
(ii) there exists f̃ ∈ Y such that o(f̃) = m.

Definition 2.8. Let X be a subset of l2B(K) and LX := {f0 : (f0, f1, ...) ∈ X}.
If LX is a non-zero subset of K, then order of X, denoted as o(X), is defined
as o(LX).

Definition 2.9. Let B = {Bn}n∈N0 be a uniformly bounded sequence of op-
erators in T . A linear expression F =

∑
i∈N0

αifi,0 in l2B(K) is said to be
B-transparent if for every pair of non-zero scalars αi and αj, we have i ∼B j.

Definition 2.10. Let B = {Bn}n∈N0 be a uniformly bounded sequence of
operators in T , and S be the unilateral shift on l2B(K). Let S be the vector
space of all finite linear combinations of finite products of S and S∗. For non-
zero F ∈ l2B(K), let SF := {TF : T ∈ S}. Then the closure of SF in l2B(K) is
a reducing subspace of S, denoted by XF . Clearly XF is the smallest reducing
subspace of l2B(K) containing F .

Lemma 2.11. Let B = {Bn}n∈N0 be a uniformly bounded sequence of oper-
ators in T , and for each n ∈ N0 let γ(n)

j denote the unique non zero entry
occurring in the jth column of the matrix of Bn. If S is the unilateral shift on
l2B(K), then for i, j ∈ N0 , the following will hold:

(i) S∗fi,j =

⎧⎨
⎩

0 if j = 0,∣∣∣ γ
(j)
i

γ
(j−1)
i

∣∣∣fi,j−1 if j > 0.

(ii) For any non negative integer k, (Sk)∗Skfi,j =
∣∣γ(j+k)

i

γ
(j)
i

∣∣2fi,j.
Proof. (i) For i ∈ N0, 〈SX, fi,0〉 = 0 for all X ∈ l2B(K), which implies S∗fi,0 =
0.
Next let X = (x0, x1, . . .) ∈ l2B(K) and xj =

∑∞
t=0 α

(j)
t et for each j ∈ N0.

Then for j > 0, we have 〈SX, fi,j〉 = 1

|γ(j)
i | 〈Bjxj−1, Bjei〉 = α

(j−1)
i |γ(j)

i |.

Choosing λi,j =
∣∣∣ γ

(j)
i

γ
(j−1)
i

∣∣∣, we get

〈X,λi,jfi,j−1〉 =
λi,j

|γ(j−1)
i |

〈Bj−1xj−1, Bj−1ei〉 =
λi,j

|γ(j−1)
i |

α
(j−1)
i ‖Bj−1ei‖2 = α

(j−1)
i |γ(j)

i |.
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Therefore, 〈SX, fi,j 〉 = 〈X, λi,jfi,j−1〉, and so S∗fi,j = λi,jfi,j−1 for j > 0.

(ii) As S∗Sfi,j =
∣∣∣γ(j+1)

i

γ
(j)
i

∣∣∣S∗fi,j+1 =
∣∣γ(j+1)

i

γ
(j)
i

∣∣2fi,j, so the result holds for k = 1.

Suppose, (S∗)nSnfi,j =
∣∣∣γ(j+n)

i

γ
(j)
i

∣∣∣2fi,j holds for n = k. We will show that it also

holds for n = k + 1.

(S∗)k+1Sk+1fi,j =
∣∣∣γ(j+1)
i

γ
(j)
i

∣∣∣S∗(S∗k

Sk)fi,j+1

=
∣∣∣γ(j+1)
i

γ
(j)
i

∣∣∣ ∣∣∣γ(j+1+k)
i

γ
(j+1)
i

∣∣∣2 S∗fi,j+1

=
∣∣∣γ(j+1)
i

γ
(j)
i

∣∣∣ ∣∣∣γ(j+1+k)
i

γ
(j+1)
i

∣∣∣2∣∣∣γ(j+1)
i

γ
(j)
i

∣∣∣ fi,j
=

∣∣∣γ(j+1+k)
i

γ
(j)
i

∣∣∣2 fi,j
Thus, the results holds for all k by induction. �

Lemma 2.12. Let B = {Bn}n∈N0 be a uniformly bounded sequence of operators
in T , and for each n ∈ N0 let γ(n)

j denote the unique non zero entry occurring
in the jth column of the matrix of Bn. Let F =

∑∞
i=0 αifi,0 be B-transparent

in l2B(K) with o(F ) = m. If for each k ∈ N0, F̃k :=
∣∣∣γ(k)

m

γ
(0)
m

∣∣∣ ∑∞
i=0 αi fi,k, then

the following will hold:
(i) (Sk)∗SkF =

∣∣γ(k)
m

γ
(0)
m

∣∣2F .

(ii) SF̃k = F̃k+1 and S∗F̃k =

{
0, if k = 0;∣∣∣ γ(k)

m

γ
(k−1)
m

∣∣∣2F̃k−1, if k > 0.

(iii) XF is the closed linear span of {F̃k : k ∈ N0}.

Proof. Since o(F ) = m so αi = 0, ∀i < m. Let Λ = {i ≥ m : αi �= 0}. Then

m ∈ Λ, and for i ∈ Λ, γ
(k)
i

γ
(0)
i

= γ(k)
m

γ
(0)
m

for each positive integer k.

(i) For i ∈ Λ and positive integer k, by Lemma 2.11(ii) we have

(Sk)∗Skfi,0 =
∣∣∣γ(k)

i

γ
(0)
i

∣∣∣2fi,0 =
∣∣∣γ(k)

m

γ
(0)
m

∣∣∣2fi,0.
Thus, (Sk)∗SkF = (Sk)∗Sk(

∑
i∈Λ αifi,0) =

∑
i∈Λ αi

∣∣∣γ(k)
m

γ
(0)
m

∣∣∣2fi,0 =
∣∣∣γ(k)

m

γ
(0)
m

∣∣∣2F.
(ii) For i, j ∈ N0, Sfi,j =

∣∣∣γ(j+1)
i

γ
(j)
i

∣∣∣fi,j+1, and so

SF̃k =
∣∣∣ γ

(k)
m

γ
(0)
m

∣∣∣ ∑
i∈Λ

αi Sfi,k =
∑
i∈Λ

αi

∣∣∣ γ
(k)
i

γ
(0)
i

∣∣∣ ∣∣∣ γ
(k+1)
i

γ
(k)
i

∣∣∣ fi,k+1 =
∣∣∣γ(k+1)

m

γ
(0)
m

∣∣∣ ∑
i∈Λ

αifi,k+1 = F̃k+1.
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As S∗fi,0 = 0 so S∗F̃0 = 0.

For k > 0, S∗F̃k =
∣∣∣γ(k)

m

γ
(0)
m

∣∣∣ ∑∞
i=0 αi S

∗fi,k =
∣∣∣γ(k)

m

γ
(0)
m

∣∣∣∑∞
i=0 αi

∣∣∣ γ
(k)
i

γ
(k−1)
i

∣∣∣fi,k−1 =∣∣∣ γ(k)
m

γ
(k−1)
m

∣∣∣2F̃k−1

(iii) By (ii) each F̃k ∈ XF and so the closed linear span{F̃k : k ∈ N0} is a
non-zero reducing subspace of W contained in XF . Thus, by minimality of
XF , we have XF = closed linear span{F̃k : k ∈ N0}. �

Definition 2.13. Let B = {Bn}n∈N0 be a uniformly bounded sequence of
operators in T , and S be the unilateral shift on l2B(K). Let Ω1,Ω2, ... be
the disjoint equivalence classes of N0 under the relation ∼B . Consider F =∑∞

i=0 αifi,0 in l2B(K). For each k, let qk :=
∑

i∈Ωk
αigi,0. Dropping those qk

which are zero, the remaining qk’s are arranged as f1, f2, ... in such a way that
for i < j we have o(fi) < o(fj). The resulting decomposition F = f1 + f2 + ...
is called the canonical decomposition of F . Clearly each fi is B-transparent in
l2B(K).
If there exists a finite positive integer n such that F = f1 + f2 + · · ·+ fn, then
F in the above case is said to have a finite canonical decomposition.

Lemma 2.14. Let B = {Bn}n∈N0 be a uniformly bounded sequence of operators
in T , and for each n ∈ N0 let γ(n)

j denote the unique non zero entry occurring
in the jth column of the matrix of Bn. Let S be the unilateral shift on l2B(K),
and X be a reducing subspace of S in l2B(K). If F =

∑
i∈N0

αifi,0 in X has a
finite canonical decomposition F = f1 + f2 + · · ·+ fn, then each fi is in XF .

Proof. Let o(fi) = mi so that m1 < m2 < · · · < mn and no two of them are
B-related. For 2 ≤ i ≤ n, as m1 �B mi, and so there exists a positive integer

ki such that γ
(ki)
m1

γ
(0)
m1

�= γ
(ki)
mi

γ
(0)
mi

. Let ki be the smallest positive integer having this

property.

Let q1 := F and for 2 ≤ i ≤ n, qi :=
[∣∣γ(ki)

mi

γ
(0)
mi

∣∣2 − (Ski )∗Ski

]
qi−1.

Then qi ∈ XF ∀ 1 ≤ i ≤ n. Also qn = (β2 . . . βn) f1, where βi =
∣∣∣γ(ki)

mi

γ
(0)
mi

∣∣∣2 −∣∣∣γ(ki)
m1

γ
(0)
m1

∣∣∣2 for 2 ≤ i ≤ n. As each βi �= 0 so qn ∈ XF =⇒ f1 ∈ XF .

In a similar way it can be shown that f2, . . . , fn are also in XF . �

3 An Extremal Problem

Theorem 3.1. Let B = {Bn}n∈N0 be a uniformly bounded sequence of opera-
tors in T , and S be the unilateral shift on l2B(K). Let X be a non zero reducing
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subspace of S in l2B(K) with o(X) = m. Then the extremal problem

sup{Re αm : F = (f0, f1, ...) ∈ X, ‖F ‖ ≤ 1, f0 =
∑
i∈N0

αiei.}

has a unique solution G =
∑

i∈N0
αigi,0 ∈ X with ‖G‖ = 1 and o(G) = m.

Proof. For F = (f0, f1, . . .) ∈ X, we define ϕ : X → C as ϕ(F ) = αm where
f0 =

∑
i∈N0

αiei. Since o(X) = m, so ϕ is a non zero bounded linear functional
on X. From [1], it follows that the extremal problem has a unique solution G
in X such that ‖G‖ = 1, ϕ(G) > 0 and

ϕ(G) = sup{Re ϕ(F ) : F ∈ X, ‖F ‖ ≤ 1}

= sup{Re αm : F = (f0, f1, ...) ∈ X, ‖F ‖ ≤ 1, f0 =
∑
i∈N0

αiei.}

We claim that G has the form G =
∑

i αifi,0 with o(G) = m.
If F ∈ X and ‖F ‖ < 1, then by maximality of G we must have Reϕ(F ) < ϕ(G).
Now as Reϕ(G+ SF ) = ϕ(G) ∀F ∈ X, so we must have ‖G+ SF ‖ ≥ 1. This
implies that G ⊥ SF ∀F ∈ X. In particular 〈G, SS∗G〉 = 0 which implies
that S∗G = 0. Thus G is of the form G =

∑
i∈N0

αifi,0. Also ϕ(G) > 0 and
o(X) = m together imply o(G) = m. �

Note: The function G in Theorem 3.1 will be called the extremal function of
X.

Theorem 3.2. Let B = {Bn}n∈N0 be a uniformly bounded sequence of opera-
tors in T , and S be the unilateral shift on l2B(K). If the extremal function of a
non-zero reducing subspace of S in l2B(K) has a finite canonical decomposition,
then it must be B-transparent.

Proof. Let X be a non-zero reducing subspace of S in l2B(K) and G =
∑
i αifi,0

be its extremal function with o(G) = m. Let G = g1 + g2 + · · · + gn be the
finite canonical decomposition of G. Each gi is B-transparent and also by
Lemma 2.14, each of them is in XG. Clearly o(g1) = m and ‖g1‖ ≤ ‖G‖ = 1.
So by extremality of G, we must have G = g1. Thus G is B-transparent. �

4 Minimal reducing subspaces

Theorem 4.1. Let B = {Bn}n∈N0 be a uniformly bounded sequence of oper-
ators in T , and for each n ∈ N0 let γ(n)

j denote the unique non zero entry
occurring in the jth column of the matrix of Bn. Also let S be the unilat-
eral shift on l2B(K). If X is a minimal reducing subspace of S in l2B(K) and
F =

∑
i αifi,0 is in X, then F is B-transparent.
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Proof. Let o(F ) = m and, if possible F is not B-transparent. So we must have
a positive integer k > m such that αk �= 0 and k �B m. This means that there

exists a positive integer l such that γ
(l)
k

γ
(0)
k

�= γ(l)
m

γ
(0)
m

.

We define G := (Sl)∗SlF −
∣∣∣ γ(l)

m

γ
(0)
m

∣∣∣2F . Clearly, G is in X, and we get

G =(Sl)∗SlF −
∣∣ γ(l)
m

γ
(0)
m

∣∣2F
=(Sl)∗Sl(

∞∑
i=m

αifi,0) −
∣∣ γ(l)
m

γ
(0)
m

∣∣2( ∞∑
i=m

αifi,0)

=
∞∑
i=m

αi
∣∣ γ(l)
i

γ
(0)
i

∣∣2fi,0 − ∞∑
i=m

αi
∣∣ γ(l)
m

γ
(0)
m

∣∣2fi,0
=

∞∑
i=m+1

αi
[∣∣ γ(l)

i

γ
(0)
i

∣∣2 − ∣∣ γ(l)
m

γ
(0)
m

∣∣2]fi,0
Thus, G =

∑∞
i=m+1 γifi,0, where γi = αi

[∣∣ γ(l)
i

γ
(0)
i

∣∣2 −
∣∣ γ(l)

m

γ
(0)
m

∣∣2]. Also since γk �= 0

so G �= 0. Moreover, o(F ) < o(G) =⇒ F /∈ XG. Hence XG is a non-zero
reducing subspace properly contained in X which contradicts the minimality
of the X. Hence F must be B-transparent. �

As an immediate corollary of the above result we have the following :

Corollary 4.2. The extremal function of a minimal reducing subspace of S in
l2B(K) is always B-transparent.

Theorem 4.3. Let B = {Bn}n∈N0 be a uniformly bounded sequence of op-
erators in T , and S be the unilateral shift on l2B(K). Let X be a reducing
subspace of S in l2B(K). Then X is minimal if and only if X = XF where F
is B-transparent.

Proof. If X is minimal and G is the associated extremal function, then the
reducing subspace XG ⊆ X. The minimality of X gives X = XG. Note that
by Corollary 4.2, G is B-transparent.
Conversely, let X = XF , where F is B-transparent. Clearly XF is a reducing
subspace. We claim thatXF is minimal. Let Y be a non zero reducing subspace
of S contained in XF and H be its extremal function, which is transparent.
Then H ∈ XF and so by Lemma 2.12(i), H is a scalar multiple of F . In
particular, F ∈ Y . Thus, Y = XF which means that XF must be minimal. �

Corollary 4.4. Every reducing subspace of S in l2B(K), whose extremal func-
tion has a finite canonical decomposition, contains a minimal reducing subspace.

Proof. The proof follows immediately from Theorem 3.2 and Theorem 4.3. �
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5 Conclusion

Theorem 5.1. Let B = {Bn}n∈N0 be a uniformly bounded sequence of op-
erators in T , and S be the unilateral shift on l2B(K). If the weight sequence
{Bn}n∈N0 is of type I, then Xfn,0 for n ∈ N0 are the only minimal reducing
subspaces of S in l2B(K).

Proof. Let X be a minimal reducing subspace of S and G be its extremal
function so that X = XG. Since the weight sequence {Bn}n∈N0 is of type I, so
the only transparent functions are fn,0 for n ∈ N0 and their scalar multiples.
The result now follows from Theorem 4.3. �

Theorem 5.2. Let B = {Bn}n∈N0 be a uniformly bounded sequence of oper-
ators in T , and S be the unilateral shift on l2B(K). If {Bn}n∈N0 is of type II,
then S has minimal reducing subspaces other than Xfn,0 , n ∈ N0.

Proof. Since the weight sequence {Bn}n∈N0 is of type II, so we can form a
transparent function F =

∑
i∈N0

αifi,0 where more than one αi’s are non zero.
Clearly,XF is a minimal reducing subspace of S in l2B(K) such thatXF �= Xfn,0

for any n ∈ N0. �

Theorem 5.3. Let B = {Bn}n∈N0 be a uniformly bounded sequence of opera-
tors in T , and S be the unilateral shift on l2B(K). If {Bn}n∈N0 is of type III,
then every reducing subspace of S in l2B(K) must contain a minimal reducing
subspace.

Proof. Let X be a reducing subspace of S and G be its extremal function. Since
the weight sequence {Bn}n∈N0 is of type III, so G must have a finite canonical
decomposition, say g1 + g2 + ... + gn. By Lemma 2.14, for each 1 ≤ i ≤ n,
gi ∈ X and so each Xgi is a minimal reducing subspace of S in l2B(K) contained
in X. �
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