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Abstract

By definition, a quadratic Lie superalgebra is a Lie superalgebra en-
dowed with a non-degenerate supersymmetric bilinear form which sat-
isfies the even and invariant properties. In this paper we give a new
way of description of the cohomology group of quadratic Lie superalge-
bras by applying the super-Poisson bracket on the super exterior algebra.
Moreover, we calculate all of the second cohomology group of elementary
quadratic Lie superalgebras which have been classified in [5].

Introduction

As far as we know, the Killing form of a Lie superalgebra is supersymmetric,
invariant and even. In some special cases, it also satisfies the non-degeneracy.
Those lead to study of Lie superalgebras endowed with a supersymmetric,
invariant, even and non-degenerate bilinear form. Such Lie superalgebras are
called quadratic Lie superalgebras.

A concerned problem is to describe the cohomology of Lie superalgebras,
which is an important tool in mathematics and theoretical physics. A classical
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example of a constant such that D. B. Fuchs and D. A. Leites in [6] calculated
the cohomology groups of the classical Lie superalgebras with trivial coeffi-
cients, Y. C. Su and R. B. Zhang in [13] computed explicitly the first and
second cohomology groups of the classical Lie superalgebras slm|n and osp2|2n

with coefficients in the finite-dimensional irreducible modules and the Kac mod-
ules, W. Bai and W. Liu in [2] described the cohomology groups of Heisenberg
Lie superalgebras.

The article is divided into three sections: The first one is devoted to re-
call some basic concepts and results of Lie superalgebras, cohomology of Lie
superalgebras and quadratic Lie superalgebras. The second one gives a new
way to describe the cohomology group of quadratic Lie superalgebras by using
the super Z × Z2− Poisson bracket in the super-exterior algebra. The last
section computes the second cohomology group of all elementary quadratic Lie
superalgebras classified in [5].

All vector spaces considered in throughout the paper are finite-dimensional
complex vector spaces.

1 Cohomology of Lie Superalgebras and

Quadratic Lie Superalgebras

In this section, we recall some preliminary concepts and basic results which
will be used later. For details we refer the reader to the paper [6] of D.B.Fuchs,
D.A.Leites and the paper [11] of G. Pinczon, R. Ushirobira.

1.1 Lie Superalgebras and Cohomology

Definition 1.1.1. A Lie superalgebra g is a Z2−graded vector space g = g0⊕g1

endowed with a Lie super bracket [.,.] that satisfies the following conditions:

(i) The Lie super bracket [.,.] is bilinear and [gx, gy] ⊂ gx+y (grading);

(ii) [X, Y ] = −(−1)xy [Y, X] (skew-supersymmetry);

(iii) (−1)zx [[X, Y ], Z] + (−1)xy [[Y, Z], X] + (−1)yz [[Z, X], Y ] = 0 (super Ja-
cobi identity)

for all x, y, z ∈ Z2, X ∈ gx, Y ∈ gy, Z ∈ gz.

Definition 1.1.2. Let g = g0⊕g1 be a Lie superalgebra. Denote by Alt(g0, C)
the algebra of alternating multilinear forms on g0 and by Sym(g1 , C) the al-
gebra of symmetric multilinear forms on g1. We define a Z × Z2-gradation on
Alt(g0, C) and on Sym(g1 , C) by

Alt(i,0)(g0, C) = Alti(g0, C), Alt(i,1)(g0, C) = {0}
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and
Sym(i,i)(g1, C) = Symi(g1, C), Sym(i,j)(g1, C) = {0}

where i, j ∈ Z; i, j ∈ Z2 are respectively the residue classes modulo 2 of i, j
and i �= j. The super-exterior algebra of g is

C(g, C) = Alt(g0, C) ⊗ Sym(g1 , C)

endowed with the super-exterior product on C(g, C) defined by

(Ω ⊗ F )∧ (Ω′ ⊗ F ′) = (−1)fω′
(Ω ∧ Ω′) ⊗ FF ′,

for all

Ω ∈ Alt(g0, C), Ω′ ∈ Altω
′
(g0, C), F ∈ Symf (g1, C), F ′ ∈ Sym(g1 , C).

Remark that C(g, C) is a Z ×Z2−graded algebra. More precisely, in terms
of Z−gradation, one has

Cn(g, C) =
n⊕

m=0

(
Altm(g0, C)⊗ Symn−m(g1, C)

)
, C0(g, C) = C,

and in terms of Z2−gradation,

C0(g, C) = Alt(g0, C) ⊗
(

⊕
j≥0

Sym2j (g1, C)
)

and C1(g, C) = Alt(g0, C)⊗
(

⊕
j≥0

Symm2j+1(g1, C)
)

.

Definition 1.1.3. Denote by End(C(g, C)) the space of endomorphisms on
C(g, C). A homogeneous endomorphism D ∈ End(C(g, C)) of degree (n, d) is
called a superderivation of C(g, C) if it satisfies the following condition:

D(A ∧ A′) = D(A) ∧ A′ + (−1)na+dbA ∧ D(A)

for all A ∈ C(a,b)(g, C) and A′ ∈ C(g, C).

Denote by Dern
d (C(g, C)) the space of superderivations of degree (n, d) of

C(g, C). Then we have a Z×Z2−gradation of the space of superderivations of
C(g, C):

Der(C(g, C)) = ⊕
(n,d)∈Z×Z2

Dern
d (C(g, C)).

Example 1.1.4. Let X ∈ gx be a homogeneous element in g of degree x and
define the endomorphism iX of C(g, C) by

iX(A) (X1, . . . , Xa−1) = (−1)xb
A (X, X1, . . . , Xa−1)
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for all A ∈ C(a,b)(g, C); X1, . . . , Xa−1 ∈ g. Then

iX(A ∧ A′) = iX(A) ∧ A′ + (−1)−a+xbA ∧ iX(A)

for all A ∈ C(a,b)(g, C), A′ ∈ C(g, C). It means that iX is a superderivation of
degree (−1, x).

Given k ≥ 0, the differential operator δk : Ck(g, C) → Ck+1(g, C) is a
superderivation of degree

(
1, 0

)
defined by

δkω (X0, . . . , Xk) =∑
r<s

(−1)s+xs(xr+1+...+xs−1)(X0 , . . . , Xr−1, [Xr , Xs] , Xr+1, . . . , X̂s, . . . , Xk)

for all ω ∈ Ck(g, C), X0 ∈ gx0 , . . . , Xk ∈ gxk , where the sign X̂s indicates
that the element Xs is omitted. It is easy to check that δ2 = δ ◦ δ = 0. By
convention, δ0 = 0.

An element ω ∈ Ck(g, C) is called a k-cocycle if δkω = 0 or a k-coboundary
if there exists ϕ ∈ Ck−1(g, C) such that ω = δk−1ϕ.

We denote by Zk(g, C) the set of all k-cocycles and by Bk(g, C) the set of
all k-coboundaries. That is

Zk(g, C) = Kerδk, Bk(g, C) = Imδk−1

. Clearly, Bk(g, C) ⊂ Zk(g, C). The quotient space Zk(g, C)/Bk(g, C) is de-
noted by Hk(g, C) and called the k -cohomology groups of g with trivial coeffi-
cients.

Definition 1.1.5. The dimension of the k-cohomology group Hk(g, C) is called
the k-th Betti number of g and denoted by bk(g).

Example 1.1.6. (see [2]) Let the Heisenberg Lie superalgebra

h2n+1,m = g0 ⊕ g1 = C{Z, X1, . . . , Xn, Xn+1, . . . , X2n} ⊕ C{Y1, . . . , Ym}
with non-zero super brackets

[Xi, Xn+i] = Z, [Yj, Yj] = Z, ∀i = 1, n, j = 1, m.

It is easy to compute that δX∗
i = δY ∗

j = 0, for all i = 1, 2n, j = 1, m and

δZ∗ =
n∑

i=1

X∗
n+i ∧ X∗

i − 1
2

m∑
j=1

Y ∗
j Y ∗

j .

For the second cohomology group, we have

δ (Z∗ ∧ ω) = δZ∗ ∧ ω − Z∗ ∧ δω = 0 ⇔ ω = 0.
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Then

Z2(h2n+1,m, C) =

=
{
X∗

i ∧ X∗
j , X∗

i ⊗ Y ∗
k , Y ∗

k Y ∗
l : i, j = 1, 2n, i �= j, k, l = 1, m

}
and

dimZ2(h2n+1,m, C) =
(

2n
2

)
+2n.m+m+

(
m
2

)
= 2n2−n+2nm+

m2 + m

2
.

That means b2(h2n+1,m) = 2n2 − n + 2nm +
m2 + m

2
− 1.

1.2 Quadratic Lie Superalgebras

Definition 1.2.1. Let g = g0 ⊕ g1 be a Lie superalgebra. Assume that B is a
bilinear form defined on g such that it satisfies the following properties:

(i) B(X, Y ) = (−1)xyB(Y, X), ∀X ∈ gx, Y ∈ gy (supersymmetric);

(ii) B ([X, Y ] , Z) = B (X, [Y, Z]) for all X, Y, Z ∈ g (invariant);

(iii) B(X, Y ) = 0, ∀Y ∈ g implies X = 0 (non-degenerate).

The pair (g, B) is called a quadratic Lie superalgebra if B is even, that is

B(X, Y ) = 0; ∀X ∈ g0, Y ∈ g1.

In this case, it is easy to check that
(
g0, B

∣∣
g0

× g0

)
is a quadratic Lie algebra

and
(
g1, B

∣∣
g1

× g1

)
is a g0−module endowed with a symplectic structure.

Let (g, B) , (g′, B′) be two quadratic Lie superalgebras. We say (g, B) and
(g′, B′) isometrically isomorphic (or i-isomorphic, for short) if there exists a
Lie superalgebra isomorphism A from g onto g′ satisfying

B′ (A(X), A(Y )) = B (X, Y ) , ∀X, Y ∈ g.

Then A is called an i-isomorphism. We write (g, B)
i∼= (g′, B′).

Definition 1.2.2. Let (g, B) be a quadratic Lie superalgebra and � be a
graded ideal of g.

(i) � is called non-degenerate if the restriction of B to �×� is non-degenerate.
Otherwise, we say � degenerate.

(ii) (g, B) is called irreducible if g does not have any non-degenerate graded
ideal excepting {0} and �.
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(iii) A non-degenerate ideal � is called irreducible if � does not have any
non-degenerate graded ideal excepting {0} and �.

(iv) Ideal � is called totally isotropic if B (�,�) = {0}.
The following proposition reduces the study of quadratic Lie superalgebras

to non-degenerate graded ideals.

Proposition 1.2.3 (see [1]). Let (g, B) be a quadratic Lie superalgebra and
� be a graded ideal of g. Then �⊥ is also a graded ideal of g. In addition, if
� is non-degenerate then so is �⊥,

[�,�⊥]
= {0} and � ∩ �⊥ = {0}. In this

case, we denote g = �⊥⊕�⊥. �

2 The Second Cohomology Group of Elemen-

tary Quadratic Lie Superalgebras

In this section, we will compute the second cohomology group of all elementary
quadratic Lie superalgebras classified in [5]. Firstly, we recall the concept of
the super Z×Z2− Poisson bracket on the super-exterior algebra of a quadratic
Lie superalgebra, which is used to give a new way of description of cohomology.

2.1 The Super Z × Z2−Poisson Bracket on The Super-
exterior Algebra

Let g = g0 ⊕ g1 be a Z2−graded vector space equipped with a non-degenerate
even supersymmetric bilinear form B. In this case, g1 is a symplectic vector
space. Hence, the dimension of g1 must be even and g is aslo called a quadratic
Z2−graded vector space. Now we recall the definition of the Poisson bracket
on Sym(g1) and the super-Poisson bracket on Alt(g0, C) which are used later.

Let {X1, . . . , Xn, Y1, . . . , Yn} be a Darboux basis of g1, i.e. we have

B(Xi, Xj) = B(Yi, Yj) = 0, B(Xi, Yj) = δij,

for all i, j = 1, n. Let {p1, . . . , pn, q1, . . . , qn} be its dual basis. Then the algebra
Sym(g1 , C) regarded as the polynomial algebra

C[p1, . . . , pn, q1, . . . , qn]

is equipped with the Poisson bracket as follows:

{F, G} =
n∑

i=1

(
∂F

∂pi

∂G

∂qi
− ∂F

∂qi

∂G

∂pi

)
, ∀F, G ∈ Sym(g1 , C).
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For any X ∈ g0, let iX be the derivation of Alt(g0, C) defined by

ιX(Ω)(Z1, . . . , Zk) = Ω(X, Z1, . . . , Zk)

for all Ω ∈ Altk+1(g0, C), X, Z1, . . . , Zk ∈ g0, k ≥ 0 and ιX(1) = 0.
Let {Z1, . . . , Zm} be a fixed orthonormal basis of g0. The super-Poisson

bracket on Alt(g0, C) is defined by (see [11]):

{Ω, Ω′} = (−1)k+1
m∑

j=1

ιZj(Ω) ∧ ιZj(Ω
′), ∀Ω ∈ Altk(g0, C), Ω′ ∈ Alt(g0, C).

The super Z × Z2−Poisson bracket on C(g, C) is given by:

{Ω ⊗ F, Ω′ ⊗ G} = (−1)fω′
({Ω, Ω′} ⊗ FG + Ω ∧ Ω′ ⊗ {F, G})

for any Ω ∈ Alt(g0, C), Ω′ ∈ Altω
′
(g0, C), F ∈ Symf (g1, C), and G ∈ Sym(g1 , C).

Proposition 2.1.1 (see [5], [11]). The algebra C(g, C) is a graded Lie al-
gebra with the super Z × Z2−Poisson bracket. More precisely, for all A ∈
C(a,b)(g, C), A′ ∈ C(a′,b′)(g, C) and A′′ ∈ C(g, C), one has

(i) {A′, A} = −(−1)aa′+bb′{A, A′},
(ii) {{A, A′}, A′′} = {A, {A′, A′′}} − (−1)aa′+bb′{A′, {A, A′′}}.

Furthermore, {A, A′ ∧ A′′} = {A, A′} ∧ A′′ + (−1)aa′+bb′A′ ∧ {A, A′′}. �

Now, we choose an arbitrary basis
{
X1

0
, . . . , Xm

0

}
of g0. Its dual basis is

denoted by {α1, . . . , αm}. Let
{

Y 1
0

, . . . , Y m
0

}
be the basis of g0 defined by

αi = B(Y i
0
, �). That means

B(Y i
0
, Xj

0
) = δij ; ∀i, j = 1, . . . , n.

Set
{
X1

1
, . . . , Xn

1
, Y 1

1
, . . . , Y n

1

}
be a Darboux basis of g1. Then the super Z ×

Z2−Poisson bracket on C(g, C) is also given by

{A, A′} = (−1)ω+f+1
m∑

i,j=1

B(Y i
0
, Y j

0
).ιXi

0
(A) ∧ ιXj

0
(A′)

+ (−1)ω
n∑

k=1

(
ιXk

1
(A) ∧ ιY k

1
(A′) − ιY k

1
(A) ∧ ιXk

1
(A′)

)
,

for all A ∈ Altω(g0, C) ⊗ Symf (g1, C), A′ ∈ C(g, C) (see [5]).
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Remark 2.1.2. In [5], the authors introduced a useful tool. That was the
3-form I defined on any quadratic Lie superalgebra (g, B) as follows

I (X, Y, Z) = B([X, Y ], Z), ∀X, Y, Z ∈ g.

This 3-form is called the 3-form associated to g. It is easy to prove that I is the
homogeneous element of degree (3, 0) in the Z×Z2−graded algebra C(g, C) =
Alt(g0, C) ⊗ Sym(g1 , C), {I, I} = 0 and δ = −{I, .} (see [5], Proposition
1.11). Using this proposition, the cohomology group Hk(g, C) can be computed
through the super Z × Z2−Poisson bracket.

2.2 The Elementary Quadratic Lie Superalgebras

The main result of the paper is the description of the second cohomology group
of elementary quadratic Lie superalgebras which have classified in [5]. Before
giving the main result, we will list the elementary quadratic Lie superalgebras
in [5]. There are exactly three superalgebras as follows.

(1) gs
4,1 = (CX0 ⊕ CY0) ⊕ (CX1 ⊕ CY1), where

g0 = span{X0, Y0}, g1 = span{X1, Y1}.
The bilinear form B is defined by

B (X0, Y0) = 1, B (X1, Y1) = 1,

the others are zero and the Lie super bracket is given by

[Y1, Y1] = −2X0, [Y0, Y1] = −2X1.

(2) gs
4,2 = (CX0 ⊕ CY0) ⊕ (CX1 ⊕ CY1), where

g0 = span{X0, Y0}, g1 = span{X1, Y1}.
The bilinear form B is defined by

B (X0, Y0) = 1, B (X1, Y1) = 1,

the others are zero and the Lie super bracket is given by

[X1, Y1] = X0, [Y0, X1] = X1, [Y0, Y1] = −Y1.

(3) gs
6 = (CX0 ⊕ CY0) ⊕ (CX1 ⊕ CY1 ⊕ CZ1 ⊕ CT1), where

g0 = span{X0, Y0}, g1 = span{X1, Y1, Z1, T1}.
The bilinear form B is defined by

B (X0, Y0) = 1, B (X1, Z1) = 1, B (Y1, T1) = 1,

the others are zero and the Lie super bracket is given by

[Z1, T1] = −X0 , [Y0, Z1] = −Y1, [Y0, T1] = −X1 .
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2.3 The Main Result

Now we will introduce the main result of the paper. Namely, we will describe
the second cohomology group of the elementary quadratic Lie superalgebras
which have listed in Subsection 2.2.

Theorem 2.3.1. With notations being as above in Subsection 2.2, the second
cohomology group of the elementary quadratic Lie superalgebras are described
as follows

(i) H2(gs
4,1, C) = span

{[
Y ∗

0
⊗ X∗

1

]
,
[
X∗

1
Y ∗

1
− 2X∗

0
∧ Y ∗

0

]}
where {X∗

0
, Y ∗

0
, X∗

1
, Y ∗

1
} is the dual basis of {X0, Y0, X1, Y1}.

(ii) H2(gs
4,2, C) = {0} .

(iii) H2(gs
6, C) = span

{[
Y ∗

0
⊗ X∗

1

]
,
[
Y ∗

0
⊗ Y ∗

1

]
,

[(
Z∗

1

)2
]

,

[(
T ∗

1

)2
]

,

[
X∗

1
Z∗

1
− X∗

0
∧ Y ∗

0

]
,
[
Y ∗

1
T ∗

1
− X∗

0
∧ Y ∗

0

]}
where

{X∗
0
, Y ∗

0
, X∗

1
, Y ∗

1
, Z∗

1
, T ∗

1
} is the dual basis of {X0, Y0, X1, Y1, Z1, T1}.

The Proof of Theorem 2.3.1

(i) Firstly, we consider gs
4,1 = (CX0 ⊕ CY0) ⊕ (CX1 ⊕ CY1), where g0 =

span{X0, Y0}, g1 = span{X1, Y1}.
In view of [5], the associated 3-form of gs

4,1 is given as follows

I = Y ∗
0
⊗ (

Y ∗
1

)2
.

By a straightforward computation, we obtain

•
{

I, X∗
0

}
=

(
Y ∗

1

)2

,
{
I, Y ∗

0

}
= 0,

{
I, X∗

1

}
= 2Y ∗

0
⊗ Y ∗

1
.

•
{

I, Y ∗
1

}
= 0,

{
I, X∗

0
∧ Y ∗

0

}
= Y ∗

0
⊗

(
Y ∗

1

)2

,

•
{

I, X∗
0
⊗ X∗

1

}
= X∗

1

(
Y ∗

1

)2

+ 2X∗
0
∧ Y ∗

0
⊗ Y ∗

1
.

•
{

I, X∗
0
⊗ Y ∗

1

}
= −

(
Y ∗

1

)3 {
I, Y ∗

0
⊗ X∗

1

}
= 0.

•
{

I, Y ∗
0
⊗ Y ∗

1

}
= 0,

{
I,

(
X∗

1

)2
}

= 4Y ∗
0
⊗ X∗

1
Y ∗

1
.
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•
{

I,
(
Y ∗

1

)2
}

= 0,
{

I, X∗
1
Y ∗

1

}
= 2Y ∗

0
⊗

(
Y ∗

1

)2

.

Then we get
Imδ1 = span

{(
Y ∗

1

)2
, Y ∗

0
⊗ Y ∗

1

}
and

Kerδ2 = span
{
Y ∗

0
⊗ X∗

1
, Y ∗

0
⊗ Y ∗

1
,
(
Y ∗

1

)2
, X∗

1
Y ∗

1
− 2X∗

0
∧ Y ∗

0

}
.

Therefore

H2(gs
4,1, C) = Kerδ2/Imδ1

= span
{[

Y ∗
0
⊗ X∗

1

]
,
[
X∗

1
Y ∗

1
− 2X∗

0
∧ Y ∗

0

]}
.

(ii) Next, we consider gs
4,2 = (CX0 ⊕ CY0) ⊕ (CX1 ⊕ CY1), where

g0 = span{X0, Y0}, g1 = span{X1, Y1}.
From [5], we obtain the associated 3-form I = Y ∗

0
⊗ X∗

1
Y ∗

1
. By a similar

computation as above, we have

Kerδ2 = Imδ1 = span
{
X∗

1
Y ∗

1
, Y ∗

0
⊗ X∗

1
, Y ∗

0
⊗ Y ∗

1

}
.

Therefore we get H2(gs
4,2, C) = {0}.

(iii) Finally, we consider gs
6 = (CX0 ⊕ CY0) ⊕ (CX1 ⊕ CY1 ⊕ CZ1 ⊕ CT1),

where g0 = span{X0, Y0}, g1 = span{X1, Y1, Z1, T1}.
By a similar computation, we have

• I = Y ∗
0
⊗ Z∗

1
T ∗

1
; Imδ1 = span

{
Z∗

1
T ∗

1
, Y ∗

0
⊗ T ∗

1
, Y ∗

0
⊗ Z∗

1

}
;

• Kerδ2 =

= span
{

Y ∗
0
⊗ X∗

1
, Y ∗

0
⊗ Y ∗

1
, Y ∗

0
⊗ Z∗

1
, Y ∗

0
⊗ T ∗

1
,
(
Z∗

1

)2
,(

T ∗
1

)2
, Z∗

1
T ∗

1
, X∗

1
Z∗

1
− X∗

0
∧ Y ∗

0
, Y ∗

1
T ∗

1
− X∗

0
∧ Y ∗

0

}
.

Therefore we get

H2(gs
6, C) = Kerδ2/Imδ1 =

= span
{[

Y ∗
0
⊗ X∗

1

]
,
[
Y ∗

0
⊗ Y ∗

1

]
,
[(

Z∗
1

)2
]
,[(

T ∗
1

)2
]
,
[
X∗

1
Z∗

1
− X∗

0
∧ Y ∗

0

]
,
[
Y ∗

1
T ∗

1
− X∗

0
∧ Y ∗

0

]}
.

The proof is complete. �
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