ON *-BASES FOR QTAG-MODULES

Ayazul Hasan

Department of Mathematics, Faculty of Science, Jazan University Jazan- P.O. Box 2097, Kingdom of Saudi Arabia e-mail: ayaz.maths@gmail.com; ayazulh@jazanu.edu.sa

Abstract

An h-reduced QTAG-module M is called totally projective if it has a nice system. In this paper, we find a new characterization for totally projective QTAG-modules of cardinality not exceeding \aleph_1 . This is in terms of the existence of a certain kind of basis which is called a *-basis. The question about the structure of larger modules having a *-basis is left open, but we establish some closure properties of such modules. We also study secure submodules with the help of these *-bases and prove that every secure submodule is nice.

1 Introduction and terminology

Let R be any ring. A module M_R is called a TAG-module if it satisfies the following two conditions:

- (I) Every finitely generated submodule of any homomorphic image of M is a direct sum of uniserial modules.
- (II) Given any two uniserial submodules U and V of a homomorphic image of M, for any submodule W of U, any non-zero homomorphism $f:W\to V$ can be extended to a homomorphism $g:U\to V$, provided the composition length $d(U/W)\leq d(V/f(W))$.

A module M_R satisfying condition (I) only is called a QTAG-module. The study of various structures for QTAG-module was started by Singh [12]. The structure theory of such modules has been developed on similar lines as that of torsion abelian groups. Several authors worked a lot on this module and

Key words: totally projective modules, *-bases, secure submodules, nice submodules. 2010 AMS Mathematics classification: 16K20

studied different notions and structures on *QTAG*-modules. Many interesting results have been surfaced, but there is a lot to explore.

Let all rings discussed here be associative with unity $(1 \neq 0)$ and modules are unital QTAG-modules. A module in which the lattice of its submodule is totally ordered is called a serial module; in addition, if it has finite composition length, it is called a uniserial module. Let us recall some definitions from [10, 11]. An element $x \in M$ is uniform, if xR is a non-zero uniform (hence uniserial) module, and for any R-module M with a unique decomposition series, d(M) denotes its decomposition length. For a uniform element $x \in M$, e(x) =d(xR) and $H_M(x) = \sup \left\{ d\left(\frac{yR}{xR}\right) \mid y \in M, \ x \in yR \text{ and } y \text{ uniform} \right\}$ are the exponent and height of x in M, respectively. $H_k(M)$ denotes the submodule of M generated by the elements of height at least k and $H^k(M)$ is the submodule of M generated by the elements of exponents at most k [3]. Let us denote by M^1 , the submodule of M, containing elements of infinite height. As defined in [4], the module M is h-divisible if $M = M^1 = \bigcap_{k=0}^{\infty} H_k(M)$. The module M is h-reduced if it does not contain any h-divisible submodule. In other words, it is free from the elements of infinite height. M is said to be bounded [11], if there exists an integer n such that $H_M(x) \leq n$ for every uniform element $x \in M$.

A submodule N of M is h-pure in M if $N \cap H_k(M) = H_k(N)$, for every integer $k \geq 0$. A submodule $N \subset M$ is nice [6] in M, if $H_{\sigma}(M/N) = (H_{\sigma}(M) + N)/N$ for all ordinals σ , i.e. every coset of M modulo N may be represented by an element of the same height.

A family \mathcal{N} of nice submodules of M is called a nice system [7] in M if

- (i) $0 \in \mathcal{N}$;
- (ii) if $\{N_i\}_{i\in I}$ is any subset of \mathcal{N} , then $\sum_{i\in I} N_i \in \mathcal{N}$;
- (iii) given any $N \in \mathcal{N}$ and any countable subset X of M, there exists $K \in \mathcal{N}$ containing $N \cup X$, such that K/N is countably generated.

An h-reduced QTAG-module M is called totally projective if it has a nice system.

Imitating [8], the submodules $H_k(M)$, $k \geq 0$ form a neighborhood system of zero, thus a topology known as h-topology arises. Closed modules are also closed with respect to this topology. Thus the closure of $N \subseteq M$ is defined as $\overline{N} = \bigcap_{k=0}^{\infty} (N + H_k(M))$. Therefore the submodule $N \subseteq M$ is closed with respect

to h-topology if $\overline{N} = N$.

The sum of all simple submodules of M is called the socle of M and is denoted by Soc(M). The cardinality of the minimal generating set of M is denoted by g(M). For all ordinals α , $f_M(\alpha)$ is the α^{th} -Ulm invariant of M (see [5]) and it is equal to $g(Soc(H_{\alpha}(M))/Soc(H_{\alpha+1}(M)))$.

Mehran et al. [9] proved that almost all of the results which hold for TAGmodules also hold good for QTAG-modules. Our notations and terminology
are standard and follow essentially those from [1, 2].

2 *-basis

We begin with an explicit definition of our main term.

Definition 2.1. Let M be a QTAG-module. For each ordinal σ , let B_{σ} be a set of representatives of the nonzero cosets of $H_{\sigma}(M)$ mod $H_{\sigma+1}(M)$; in other words, B_{σ} contains exactly one element from each of the nonzero cosets of $H_{\sigma+1}(M)$ in $H_{\sigma}(M)$. If each element x in M can be expressed as

$$x = b_1 + b_2 + \dots + b_n \tag{1}$$

where $b_i \in B_{\sigma(i)}$ with $\sigma(1) < \sigma(2) < \cdots < \sigma(n)$, then $B = \bigcup B_{\sigma}$ is called a *-basis of M

The expression (1) is called a representation of x with respect to the *-basis B.

Remark In order to accommodate modules that are not h-reduced, we can adjoin ∞ to the class of ordinals with the understanding that $\sigma < \infty$ for every ordinal σ . It is convenient here, however, not to allow the usual $\infty < \infty$ in regard to the definition B_{∞} . We, in fact, define B_{∞} to be the nonzero elements of $H_{\infty}(M) = \bigcap H_{\alpha}(M)$, where α ranges over all ordinals.

Now we prove the following lemma.

Lemma 2.1. If $B = \bigcup B_{\sigma}$ is a *-basis of a QTAG-module M, then the representation (1) of each element x in M with respect to this basis is unique.

Proof. Let $x = b_1 + b_2 + \cdots + b_n = b'_1 + b'_2 + \cdots + b'_m$ be two representations of x with respect to the *-basis $B = \bigcup B_{\sigma}$. Hence, suppose that $b_i \in B_{\sigma(i)}$ and $b'_j \in B_{\mu(j)}$, where $\sigma(1) < \sigma(2) < \cdots < \sigma(n)$ and $\mu(1) < \mu(2) < \cdots < \mu(m)$. Since $\sigma(1) = H_M(x) = \mu(1)$, we quickly conclude that $\sigma(1) = \mu(1)$ and that $b_1 = b'_1$. If we replace x by $x - b_1 = x - b'_1$, the proof then follows by induction on n.

The following example demonstrates that not all QTAG-modules have a *-basis.

Example 1: Let M be the closure of an unbounded, countably generated QTAG-module having no elements of infinite height. More specifically, we can take M to be the torsion product of the uniserial modules. Let $U_n = \langle u_n \rangle$ be a uniserial module of exponent n, and let M be the closed submodule of the product $\prod U_n$. As it is well known, in the specific case we are now considering or in the more general case which we began, M has cardinality of the continuum and $H_{\omega}(M) = 0$. Moreover, for each nonnegative integer n, $H_n(M)/H_{n+1}(M)$ is countably generated. Now, suppose that M has a *-basis $B = \bigcup B_n$. Since $H_n(M)/H_{n+1}(M)$ is countably generated, B_n must be countably generated. Therefore, $B = \bigcup B_n$ is countably generated, and consequently M must be countably generated. But this is not the case, and we conclude that M cannot have a *-basis.

The next lemma shows that the class of QTAG-modules having a *-basis is closed with respect to direct sums.

Lemma 2.2. If $M = \bigoplus_{i \in I} M_i$ is a direct sum of QTAG-modules M_i that have *-bases, then M itself has a *-basis.

Proof. If $B_i = \bigcup B_{i,\sigma}$ be a *-basis for M_i . Then $B_{i,\sigma}$ is a set of representatives for the nonzero cosets of $H_{\sigma+1}(M_i)$ in $H_{\sigma}(M_i)$, and each element $x_i \in M_i$ has a unique representation

$$x_i = b_{i,1} + b_{i,2} + \dots + b_{i,n}$$

where $b_{i,j} \in B_{i,\sigma(j)}$ with $\sigma(1) < \sigma(2) < \cdots < \sigma(n)$. We define $B_{\sigma} = \bigoplus_{i \in I} B_{i,\sigma} = \sum_{i} b_{i,\sigma}$, where the sum is finite but not vacuous, and $b_{i,\sigma} \in B_{i,\sigma}$ and let $B = \bigcup B_{\sigma}$.

Our claim is that B is a *-basis for M. To verify this, first observe that B_{σ} is a set of representatives of the nonzero elements of $H_{\sigma+1}(M)$ in $H_{\sigma}(M)$. This is an immediate consequence of the fact that $H_{\sigma}(M) = \bigoplus H_{\sigma}(M_i)$. It

remains only to show that each element x in M can be written as

$$x = b_1 + b_2 + \dots + b_n,$$

where
$$b_j \in B_{\sigma(j)} = \bigoplus_{i \in I} B_{i,\sigma(j)}$$
 with $\sigma(1) < \sigma(2) < \cdots < \sigma(n)$.

But we know that $x = \sum x_i$, where the sum is finite and $x_i \in M_i$. Moreover, since $B_i = \bigcup B_{i,\sigma}$ is a *-basis of M_i , we know that $x_i = \sum b_{i,j}$, where $b_{i,j} \in$ $B_{i,\sigma(j)}$ with $\sigma_i(1) < \sigma_i(2) < \dots$

Define

$$\Gamma = \{ \sigma : \sigma = \sigma_i(j) \text{ for some } i \text{ and } j \},$$

and list this finite set in increasing order $\sigma(1) < \sigma(2) < \cdots < \sigma(n)$.

For each $\sigma(k) \in \Gamma$, we set $b_k = \sum b_{i,j}$, where $\sigma_i(j) = \sigma(k)$. Then $b = b_1 + b_2 + \cdots + b_n$, where $b_k \in B_{\sigma(k)} = \bigoplus B_{i,\sigma(k)}$, and B is a *-basis of M. \square

The next lemma can be interpreted to mean that any QTAG-module that has a basis also has a *-basis, which is different from the basis. The proof is trivial.

Lemma 2.3. If M is a QTAG-module such that $M = \bigoplus_{n < \omega} M_n$, where $M_n = \bigoplus \langle a_{n,i} \rangle$ is a direct sum of uniserial modules of exponent n. Define

$$B_k = \{ \sum_{n>k} t_{n,i} H(a'_{n,i}), \text{ where } d\left(\frac{a_{n,i}R}{a'_{n,i}R}\right) = k : t_{n,i} \ge 0 \},$$

where the sum is finite but not trivial. Then $B = \bigcup_{k < \omega} B_k$ is a *-basis of M. In particular, any bounded QTAG-module has a *-basis.

Perhaps we should insert a word of caution here. The fact that M has a *-basis does not imply that $B = \bigcup B_{\sigma}$ is a *-basis of M for every choice B_{σ} of representatives of $H_{\sigma}(M)$ mod $H_{\sigma+1}(M)$. The following simple example illustrates this fact.

Example 2: Let $M = \bigoplus_{n \geq 1} \langle c_n \rangle$ be a direct sum of uniserial modules where the exponent of c_n is n for each positive integer n. As in Lemma 2.3,

$$B_n = \{ \sum_{i>n} t_i H(c_i'), \text{ where } d\left(\frac{c_i R}{c_i' R}\right) = n : t_i \ge 0 \},$$

is a set of representatives of $H_n(M) \mod H_{n+1}(M)$ for all $n < \omega$. Then $B = \bigcup B_n$ is a *-basis of M. Now, let $N = \bigoplus \langle c_n - H(c'_{n+1}) \rangle$ where $d\left(\frac{c_{n+1}R}{c'_{n+1}R}\right) = 1$. Then N is an h-pure submodule of M with the property that M/N is h-divisible.

Let $B' = \bigcup B'_n$ be a *-basis for N, where B'_n is a set of representatives of $H_n(N) \mod H_{n+1}(N)$. Since $H_n(M) = H_n(N) + H_{n+1}(M)$, clearly B'_n is also a set of representatives of $H_n(M) \mod H_{n+1}(M)$. But obviously B' cannot be a *-basis of M since $B' \subseteq N \neq M$.

The next lemma will prove to be a major component in the proof of our first major result, Theorem 2.1.

Lemma 2.4. Let M be a QTAG-module and β an ordinal. If $H_{\beta}(M)$ and $M/H_{\beta}(M)$ both have a *-basis, then M has a *-basis.

Proof. For $\sigma < \beta$, let $\bar{A}_{\sigma} = A_{\sigma}/H_{\beta}(M)$ be a set of representatives of $H_{\sigma}(M/H_{\beta}(M)) = H_{\sigma}(M)/H_{\beta}(M) \mod H_{\sigma+1}(M/H_{\beta}(M)) = H_{\sigma+1}(M)/H_{\beta}(M)$, where $A_{\sigma} \subseteq H_{\sigma}(M)$. Certainly, A_{σ} is a set representatives of $H_{\sigma}(M) \mod H_{\sigma+1}(M)$. Let C_{σ} be a set representatives of $H_{\sigma}(H_{\beta}(M)) = H_{\beta+\sigma}(M) \mod H_{\sigma+1}(H_{\beta}(M)) = H_{\beta+\sigma+1}(M)$. Define $B_{\sigma} = A_{\sigma}$ if $\sigma < \beta$ and let $B_{\beta+\sigma} = C_{\sigma}$. In either case, B_{μ} is a set of representatives of $H_{\mu}(M) \mod H_{\mu+1}(M)$. Moreover, if we choose A_{σ} and C_{σ} such that $\bar{A} = \bigcup \bar{A}_{\sigma}$ and $C = \bigcup C_{\sigma}$ are *-bases of $M/H_{\beta}(M)$ and $H_{\beta}(M)$, respectively, then B is a *-basis of M.

And so, we prepare to state the following.

Corollary 2.1. If M is a QTAG-module and $H_1(M)$ has a *-basis, then so does M.

Through the preceding series of lemmas, we have established the essentials for the proof of the following.

Theorem 2.1. Let M be a totally projective QTAG-module. Then M has a *-basis.

Proof. Since any h-divisible module M has a *-basis $B = B_{\infty} = M \setminus 0$, we may assume, by virtue of Lemma 2.2, that M is h-reduced. Let M be h-reduced of length ρ , that is, let ρ be the smallest ordinal for which $H_{\rho}(M) = 0$. The proof is by induction on ρ . If $\rho = 1$, in fact if $\rho = n < \omega$, then M has a *-basis according to Lemma 2.3. If ρ is infinite, there are two cases:

Case $I: \rho$ is a limit. As $M = \bigoplus_i M_i$, where M_i is a totally projective module of smaller length than ρ . By the induction hypothesis M_i has a *-basis. Hence, again by Lemma 2.2, M has a *-basis.

Case $II: \rho$ is isolated. Then $H_{\rho-1}(M)$ being bounded has a *-basis according to Lemma 2.3. Moreover, $M/H_{\rho-1}(M)$ being a totally projective module of length $\rho-1<\rho$ has a *-basis according to the induction hypothesis. Finally, Lemma 2.4 implies that M has a *-basis, which completes the proof of the theorem.

3 Secure submodules

In this brief section, we start with the following useful concept.

Definition 3.1. A submodule N of a QTAG-module M with a *-basis B is a called a secure submodule if for $0 \neq y \in N$, $y = b_1 + b_2 + \cdots + b_n$ is the unique representation of y with respect to B, then $b_i \in N$ for each i.

The next lemma is crucial for our new characterization of totally projective QTAG-modules of cardinality not exceeding \aleph_1 .

Lemma 3.1. Let N be a secure submodule of a QTAG-module M. Then N is nice in M.

Proof. Let M be a QTAG-module with a *-basis $B = \bigcup B_{\sigma}$ and let N be a secure submodule of M with respect to B. Suppose that $x \in M \setminus N$. In order to show that N is nice in M, it suffices to show that the coset x + N has a proper element x_0 , that is, to show that there is an element $x_0 \in x + N$ with the property that $H_M(x_0) \geq H_M(x_0 + y)$ for all $y \in N$. In order to do this, among all the elements in the coset x + N, choose x_0 to have the shortest possible representation

$$x_0 = b_1 + b_2 + \dots + b_n.$$

Let $b_i \in B_{\sigma(i)}$, where $\sigma(1) < \sigma(2) \cdots < \sigma(n)$. Using the fact that n is minimal, we will show that x_0 is proper. Suppose that x_0 is not proper, and let $H_M(x_0 - y) > H_M(x_0)$ where $y \in N$. Let

$$y = b'_1 + b'_2 + \dots + b'_m$$

where $b_i' \in B_{\mu(i)}$, where $\mu(1) < \mu(2) \cdots < \mu(m)$. Since $H_M(x_0 - y) > H_M(x_0)$, it follows that $H_M(y) = H_M(x_0)$ and therefore $\mu(1) = H_M(y) = H_M(x_0) = \sigma(1)$. This implies that $b_1 = b_1'$. But N is secure, so $b_1 = b_1' \in N$. This, however, yields a contradiction since $x_0 - b_1 \in x + N$ has a shorter representation than x_0 . Therefore, N is nice in M, and the lemma is proved.

We are now in a position to state and prove the second major result of this article.

Theorem 3.1. Let M be a QTAG-module of cardinality not exceeding \aleph_1 . Then M is totally projective if and only if M has a *-basis.

Proof. If M is totally projective, it has a *-basis by Theorem 2.1.

Conversely, Suppose that M has a *-basis $B = \bigcup B_{\sigma}$. It is well known that M has a smooth chain of nice submodules

$$0 = N_0 \subseteq N_1 \subseteq \cdots \subseteq N_{\alpha} \subseteq \cdots$$

that leads up to $M=\bigcup N_{\alpha}$ with the property that $N_{\alpha+1}/N_{\alpha}$ is countably generated for each α . Therefore, the theorem will be proved if we can show that there exists such a chain of nice submodules. If M is countably generated, there is nothing more to prove. Hence, assume that $g(M)=\aleph_1$. In view of Lemma 3.1, we need only establish the desired chain

$$0 = N_0 \subset N_1 \subset \cdots \subset N_{\alpha} \subset \cdots$$

of secure submodules. The main advantage of considering secure submodules is that the property of being a secure submodule, unlike that of being a nice submodule, is inductive; all secure submodules here are understood to be with

respect to the fixed *-basis B of M. Since $g(M) = \aleph_1$, it now suffices to show that any countably generated submodule K of M is contained in a countably generated secure submodule T of M.

Let K be any countably generated submodule of M. Set $T_0 = K$. We define T_n inductively as follows:

$$T_{n+1} = \langle b_i : x = b_1 + b_2 + \dots + b_n, \text{ where } x \in T_n \rangle.$$

It should be understood in the preceding defining equation of T_{n+1} that $b_1 + b_2 + \cdots + b_n$ is the representation of x with respect to the *-basis B of M. Finally, we set $T = \bigcup_{n < \omega} T_n$. Since T is obviously secure and remains countably generated, the proof is finished.

We close the study with

4 Concluding discussion

It remains to investigate the modules of cardinality larger than \aleph_1 that have *-bases. We have not been able to modify the proof of Theorem 3.1, so that it applies, but perhaps some other approach might work.

Acknowledgements

The author owes deep thanks to the referee for his/her careful reading of the paper, and to the Editor, for his/her valuable editorial work.

References

- [1] L. Fuchs, Infinite Abelian Groups, Vol. I, Academic Press, New York, 1970.
- [2] L. Fuchs, Infinite Abelian Groups, Vol. II, Academic Press, New York, 1973.
- [3] M.Z. Khan, *Modules behaving like torsion abelian groups*, Math. Japonica, **22**(1978), no. 5, 513-518.
- [4] M.Z. Khan, h-divisible and basic submodules, Tamkang J. Math., 10(1979), no. 2, 197-203.
- [5] A. Mehdi, M.Y. Abbasi and F. Mehdi, On some structure theorems of QTAG-modules of countable Ulm type, South East Asian J. Math. & Math. Sci., 3(2005), no. 3, 103-110.
- [6] A. Mehdi, M. Y. Abbasi and F. Mehdi, Nice decomposition series and rich modules, South East Asian J. Math. & Math. Sci., 4(2005), no. 1, 1-6.
- [7] A. Mehdi, M. Y. Abbasi and F. Mehdi, $On~(\omega+n)$ -projective modules, Ganita Sandesh, **20**(2006), no. 1, 27-32.
- [8] A. Mehdi, S.A.R.K. Naji and A. Hasan, Small homomorphisms and large submodules of QTAG-modules, Sci. Ser. A. Math Sci., 23(2012), 19-24.

[9] H. Mehran and S. Singh, On σ -pure submodules of QTAG-modules, Arch. Math., $\mathbf{46}(1986)$, 501-510.

- [10] S. Singh, Modules over hereditary noetherian prime rings, Canad. J. Math., **27**(1975), 867-883.
- [11] S. Singh, Some decomposition theorems in abelian groups and their generalizations, Ring Theory: Proceedings of Ohio University Conference, Marcel Dekker, New York 25(1976), 183-189.
- [12] S. Singh, Abelian groups like modules, Act. Math. Hung, 50(1987), 85-95.