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Abstract

An h-reduced QTAG-module M is called totally projective if it has
a nice system. In this paper, we find a new characterization for totally
projective QTAG-modules of cardinality not exceeding ℵ1. This is in
terms of the existence of a certain kind of basis which is called a ∗-basis.
The question about the structure of larger modules having a ∗-basis is
left open, but we establish some closure properties of such modules. We
also study secure submodules with the help of these ∗-bases and prove
that every secure submodule is nice.

1 Introduction and terminology

Let R be any ring. A module MR is called a TAG-module if it satisfies the
following two conditions:

(I) Every finitely generated submodule of any homomorphic image of M is
a direct sum of uniserial modules.

(II) Given any two uniserial submodules U and V of a homomorphic image of
M , for any submodule W of U , any non-zero homomorphism f : W → V
can be extended to a homomorphism g : U → V , provided the composi-
tion length d(U/W ) ≤ d(V/f(W )).

A module MR satisfying condition (I) only is called a QTAG-module. The
study of various structures for QTAG-module was started by Singh [12]. The
structure theory of such modules has been developed on similar lines as that
of torsion abelian groups. Several authors worked a lot on this module and
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studied different notions and structures on QTAG-modules. Many interesting
results have been surfaced, but there is a lot to explore.

Let all rings discussed here be associative with unity (1 �= 0) and modules
are unital QTAG-modules. A module in which the lattice of its submodule is
totally ordered is called a serial module; in addition, if it has finite composi-
tion length, it is called a uniserial module. Let us recall some definitions from
[10, 11]. An element x ∈ M is uniform, if xR is a non-zero uniform (hence unis-
erial) module, and for any R-module M with a unique decomposition series,
d(M) denotes its decomposition length. For a uniform element x ∈ M, e(x) =

d(xR) and HM (x) = sup
{

d

(
yR

xR

)
| y ∈ M, x ∈ yR and y uniform

}
are the

exponent and height of x in M, respectively. Hk(M) denotes the submodule of
M generated by the elements of height at least k and Hk(M) is the submodule
of M generated by the elements of exponents at most k [3]. Let us denote by
M1, the submodule of M , containing elements of infinite height. As defined in

[4], the module M is h-divisible if M = M1 =
∞⋂

k=0

Hk(M). The module M

is h-reduced if it does not contain any h-divisible submodule. In other words,
it is free from the elements of infinite height. M is said to be bounded [11],
if there exists an integer n such that HM(x) ≤ n for every uniform element
x ∈ M .

A submodule N of M is h-pure in M if N ∩ Hk(M) = Hk(N), for ev-
ery integer k ≥ 0. A submodule N ⊂ M is nice [6] in M, if Hσ(M/N) =
(Hσ(M) + N)/N for all ordinals σ, i.e. every coset of M modulo N may be
represented by an element of the same height.

A family N of nice submodules of M is called a nice system [7] in M if

(i) 0 ∈ N ;

(ii) if {Ni}i∈I is any subset of N , then
∑
i∈I

Ni ∈ N ;

(iii) given any N ∈ N and any countable subset X of M, there exists K ∈ N
containing N ∪X, such that K/N is countably generated.

An h-reduced QTAG-module M is called totally projective if it has a nice
system.

Imitating [8], the submodules Hk(M), k ≥ 0 form a neighborhood system
of zero, thus a topology known as h-topology arises. Closed modules are also
closed with respect to this topology. Thus the closure of N ⊆ M is defined as

N =
∞⋂

k=0

(N +Hk(M)). Therefore the submodule N ⊆ M is closed with respect
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to h-topology if N = N .

The sum of all simple submodules of M is called the socle of M and is
denoted by Soc(M). The cardinality of the minimal generating set of M is
denoted by g(M). For all ordinals α, fM (α) is the αth-Ulm invariant of M
(see [5]) and it is equal to g

(
Soc(Hα(M))/Soc(Hα+1(M))

)
.

Mehran et al. [9] proved that almost all of the results which hold for TAG-
modules also hold good for QTAG-modules. Our notations and terminology
are standard and follow essentially those from [1, 2].

2 ∗-basis

We begin with an explicit definition of our main term.

Definition 2.1. Let M be a QTAG-module. For each ordinal σ, let Bσ be a
set of representatives of the nonzero cosets of Hσ(M) mod Hσ+1(M); in other
words, Bσ contains exactly one element from each of the nonzero cosets of
Hσ+1(M) in Hσ(M). If each element x in M can be expressed as

x = b1 + b2 + · · ·+ bn (1)

where bi ∈ Bσ(i) with σ(1) < σ(2) < · · · < σ(n), then B =
⋃

Bσ is called a
∗-basis of M .

The expression (1) is called a representation of x with respect to the ∗-basis
B.

Remark In order to accommodate modules that are not h-reduced, we can
adjoin ∞ to the class of ordinals with the understanding that σ < ∞ for every
ordinal σ. It is convenient here, however, not to allow the usual ∞ < ∞ in
regard to the definition B∞. We, in fact, define B∞ to be the nonzero elements
of H∞(M) =

⋂
Hα(M), where α ranges over all ordinals.

Now we prove the following lemma.

Lemma 2.1. If B =
⋃

Bσ is a ∗-basis of a QTAG-module M , then the repre-
sentation (1) of each element x in M with respect to this basis is unique.

Proof. Let x = b1 + b2 + · · ·+ bn = b′1 + b′2 + · · ·+ b′m be two representations
of x with respect to the ∗-basis B =

⋃
Bσ. Hence, suppose that bi ∈ Bσ(i) and

b′j ∈ Bμ(j), where σ(1) < σ(2) < · · · < σ(n) and μ(1) < μ(2) < · · · < μ(m).
Since σ(1) = HM(x) = μ(1), we quickly conclude that σ(1) = μ(1) and that
b1 = b′1. If we replace x by x− b1 = x− b′1, the proof then follows by induction
on n. �
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The following example demonstrates that not all QTAG-modules have a
∗-basis.
Example 1: Let M be the closure of an unbounded, countably generated

QTAG-module having no elements of infinite height. More specifically, we can
take M to be the torsion product of the uniserial modules. Let Un = 〈un〉 be
a uniserial module of exponent n, and let M be the closed submodule of the
product

∏
Un. As it is well known, in the specific case we are now considering

or in the more general case which we began, M has cardinality of the continuum
and Hω(M) = 0. Moreover, for each nonnegative integer n, Hn(M)/Hn+1(M)
is countably generated. Now, suppose that M has a ∗-basis B =

⋃
Bn. Since

Hn(M)/Hn+1(M) is countably generated, Bn must be countably generated.
Therefore, B =

⋃
Bn is countably generated, and consequently M must be

countably generated. But this is not the case, and we conclude that M cannot
have a ∗-basis.

The next lemma shows that the class of QTAG-modules having a ∗-basis
is closed with respect to direct sums.

Lemma 2.2. If M =
⊕
i∈I

Mi is a direct sum of QTAG-modules Mi that have

∗-bases, then M itself has a ∗-basis.
Proof. If Bi =

⋃
Bi,σ be a ∗-basis for Mi. Then Bi,σ is a set of representatives

for the nonzero cosets of Hσ+1(Mi) in Hσ(Mi), and each element xi ∈ Mi has
a unique representation

xi = bi,1 + bi,2 + · · ·+ bi,n

where bi,j ∈ Bi,σ(j) with σ(1) < σ(2) < · · · < σ(n).
We define Bσ =

⊕
i∈I

Bi,σ =
∑
i

bi,σ, where the sum is finite but not vacuous,

and bi,σ ∈ Bi,σ and let B =
⋃

Bσ .
Our claim is that B is a ∗-basis for M . To verify this, first observe that

Bσ is a set of representatives of the nonzero elements of Hσ+1(M) in Hσ(M).
This is an immediate consequence of the fact that Hσ(M) =

⊕
i∈I

Hσ(Mi). It

remains only to show that each element x in M can be written as

x = b1 + b2 + · · ·+ bn,

where bj ∈ Bσ(j) =
⊕
i∈I

Bi,σ(j) with σ(1) < σ(2) < · · · < σ(n).

But we know that x =
∑

xi, where the sum is finite and xi ∈ Mi. Moreover,
since Bi =

⋃
Bi,σ is a ∗-basis of Mi, we know that xi =

∑
bi,j, where bi,j ∈

Bi,σ(j) with σi(1) < σi(2) < . . .
Define

Γ = {σ : σ = σi(j) for some i and j},



Ayazul Hasan 27

and list this finite set in increasing order σ(1) < σ(2) < · · · < σ(n).
For each σ(k) ∈ Γ, we set bk =

∑
bi,j, where σi(j) = σ(k). Then b =

b1 + b2 + · · ·+ bn, where bk ∈ Bσ(k) =
⊕
i

Bi,σ(k), and B is a ∗-basis of M . �
The next lemma can be interpreted to mean that any QTAG-module that

has a basis also has a ∗-basis, which is different from the basis. The proof is
trivial.

Lemma 2.3. If M is a QTAG-module such that M =
⊕

n<ω
Mn, where Mn =⊕〈an,i〉 is a direct sum of uniserial modules of exponent n. Define

Bk = {
∑
n>k

tn,iH(a′
n,i), where d

(
an,iR

a′
n,iR

)
= k : tn,i ≥ 0},

where the sum is finite but not trivial. Then B =
⋃

k<ω

Bk is a ∗-basis of M . In

particular, any bounded QTAG-module has a ∗-basis.
Perhaps we should insert a word of caution here. The fact that M has a

∗-basis does not imply that B =
⋃

Bσ is a ∗-basis of M for every choice Bσ

of representatives of Hσ(M) mod Hσ+1(M). The following simple example
illustrates this fact.
Example 2: Let M=

⊕
n≥1

〈cn〉 be a direct sum of uniserial modules where the

exponent of cn is n for each positive integer n. As in Lemma 2.3,

Bn = {
∑
i>n

tiH(c′i), where d

(
ciR

c′iR

)
= n : ti ≥ 0},

is a set of representatives of Hn(M) mod Hn+1(M) for all n < ω. Then B =⋃
Bn is a ∗-basis of M . Now, let N =

⊕〈cn−H(c′n+1)〉 where d

(
cn+1R

c′n+1R

)
= 1.

Then N is an h-pure submodule of M with the property that M/N is h-
divisible.

Let B′ =
⋃

B′
n be a ∗-basis for N , where B′

n is a set of representatives of
Hn(N) mod Hn+1(N). Since Hn(M) = Hn(N) + Hn+1(M), clearly B′

n is also
a set of representatives of Hn(M) mod Hn+1(M). But obviously B′ cannot be
a ∗-basis of M since B′ ⊆ N �= M .

The next lemma will prove to be a major component in the proof of our
first major result, Theorem 2.1.

Lemma 2.4. Let M be a QTAG-module and β an ordinal. If Hβ(M) and
M/Hβ(M) both have a ∗-basis, then M has a ∗-basis.
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Proof. For σ < β, let Āσ = Aσ/Hβ(M) be a set of representatives of
Hσ(M/Hβ(M)) = Hσ(M)/Hβ(M) mod Hσ+1(M/Hβ(M)) =
Hσ+1(M)/Hβ(M), where Aσ ⊆ Hσ(M). Certainly, Aσ is a set representatives
of Hσ(M) mod Hσ+1(M). Let Cσ be a set representatives of Hσ(Hβ(M)) =
Hβ+σ(M) mod Hσ+1(Hβ(M)) = Hβ+σ+1(M). Define Bσ = Aσ if σ < β
and let Bβ+σ = Cσ. In either case, Bμ is a set of representatives of Hμ(M)
mod Hμ+1(M). Moreover, if we choose Aσ and Cσ such that Ā =

⋃
Āσ and

C =
⋃

Cσ are ∗-bases of M/Hβ(M) and Hβ(M), respectively, then B is a
∗-basis of M . �

And so, we prepare to state the following.

Corollary 2.1. If M is a QTAG-module and H1(M) has a ∗-basis, then so
does M .

Through the preceding series of lemmas, we have established the essentials
for the proof of the following.

Theorem 2.1. Let M be a totally projective QTAG-module. Then M has a
∗-basis.
Proof. Since any h-divisible module M has a ∗-basis B = B∞ = M\0, we may
assume, by virtue of Lemma 2.2, that M is h-reduced. Let M be h-reduced
of length ρ, that is, let ρ be the smallest ordinal for which Hρ(M) = 0. The
proof is by induction on ρ. If ρ = 1, in fact if ρ = n < ω, then M has a ∗-basis
according to Lemma 2.3. If ρ is infinite, there are two cases:
Case I : ρ is a limit. As M =

⊕
i

Mi, where Mi is a totally projective module

of smaller length than ρ. By the induction hypothesis Mi has a ∗-basis. Hence,
again by Lemma 2.2, M has a ∗-basis.
Case II : ρ is isolated. Then Hρ−1(M) being bounded has a ∗-basis according
to Lemma 2.3. Moreover, M/Hρ−1(M) being a totally projective module of
length ρ − 1 < ρ has a ∗-basis according to the induction hypothesis. Finally,
Lemma 2.4 implies that M has a ∗-basis, which completes the proof of the
theorem. �

3 Secure submodules

In this brief section, we start with the following useful concept.

Definition 3.1. A submodule N of a QTAG-module M with a ∗-basis B is a
called a secure submodule if for 0 �= y ∈ N , y = b1 + b2 + · · ·+ bn is the unique
representation of y with respect to B, then bi ∈ N for each i.

The next lemma is crucial for our new characterization of totally projective
QTAG-modules of cardinality not exceeding ℵ1.
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Lemma 3.1. Let N be a secure submodule of a QTAG-module M . Then N
is nice in M .

Proof. Let M be a QTAG-module with a ∗-basis B =
⋃

Bσ and let N be a
secure submodule of M with respect to B. Suppose that x ∈ M\N . In order
to show that N is nice in M , it suffices to show that the coset x + N has a
proper element x0, that is, to show that there is an element x0 ∈ x+N with the
property that HM(x0) ≥ HM (x0 + y) for all y ∈ N . In order to do this, among
all the elements in the coset x + N , choose x0 to have the shortest possible
representation

x0 = b1 + b2 + · · ·+ bn.

Let bi ∈ Bσ(i), where σ(1) < σ(2) · · · < σ(n). Using the fact that n is minimal,
we will show that x0 is proper. Suppose that x0 is not proper, and let HM(x0−
y) > HM (x0) where y ∈ N . Let

y = b′1 + b′2 + · · ·+ b′m

where b′i ∈ Bμ(i), where μ(1) < μ(2) · · · < μ(m). Since HM (x0 − y) > HM(x0),
it follows that HM(y) = HM (x0) and therefore μ(1) = HM (y) = HM(x0) =
σ(1). This implies that b1 = b′1. But N is secure, so b1 = b′1 ∈ N . This,
however, yields a contradiction since x0−b1 ∈ x+N has a shorter representation
than x0. Therefore, N is nice in M , and the lemma is proved. �

We are now in a position to state and prove the second major result of this
article.

Theorem 3.1. Let M be a QTAG-module of cardinality not exceeding ℵ1.
Then M is totally projective if and only if M has a ∗-basis.
Proof. If M is totally projective, it has a ∗-basis by Theorem 2.1.

Conversely, Suppose that M has a ∗-basis B =
⋃

Bσ . It is well known that
M has a smooth chain of nice submodules

0 = N0 ⊆ N1 ⊆ · · · ⊆ Nα ⊆ . . .

that leads up to M =
⋃

Nα with the property that Nα+1/Nα is countably
generated for each α. Therefore, the theorem will be proved if we can show
that there exists such a chain of nice submodules. If M is countably generated,
there is nothing more to prove. Hence, assume that g(M) = ℵ1. In view of
Lemma 3.1, we need only establish the desired chain

0 = N0 ⊆ N1 ⊆ · · · ⊆ Nα ⊆ . . .

of secure submodules. The main advantage of considering secure submodules
is that the property of being a secure submodule, unlike that of being a nice
submodule, is inductive; all secure submodules here are understood to be with
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respect to the fixed ∗-basis B of M . Since g(M) = ℵ1, it now suffices to show
that any countably generated submodule K of M is contained in a countably
generated secure submodule T of M .

Let K be any countably generated submodule of M . Set T0 = K. We define
Tn inductively as follows:

Tn+1 = 〈bi : x = b1 + b2 + · · ·+ bn, where x ∈ Tn〉.
It should be understood in the preceding defining equation of Tn+1 that b1 +
b2 + · · · + bn is the representation of x with respect to the ∗-basis B of M .
Finally, we set T =

⋃
n<ω

Tn. Since T is obviously secure and remains countably

generated, the proof is finished. �
We close the study with

4 Concluding discussion

It remains to investigate the modules of cardinality larger than ℵ1 that have
∗-bases. We have not been able to modify the proof of Theorem 3.1, so that it
applies, but perhaps some other approach might work.
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