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Abstract

A Hopf-type formula of the Cauchy problem for Hamilton - Jacobi
equations (H, o) is defined by u(¢, z) = maxgern {(z, q)—U*(q)—fOt H(t,q)dr}.
We investigate the points on the domain Q where the function u(¢,x) is
differentiable, and the strip of the form (0,%0) x R™ of © where the func-
tion u(t, x) is continuously differentiable. Moreover, we present a simple
propagation of singularity in forward of u(t, ).

1 Introduction

Consider the Cauchy problem for Hamilton - Jacobi equation (H, o)

0
O H( D) =0, (1,2) 0= (0.T) x B, (L.1)
u(0,2) =o(z), x € R". (1.2)
If the Hamiltonian H = H(p) is convex and superlinear, ¢ is Lipschitz on
R™, then the function

u(t,x):ynel%{gl {U(y)+tH*(x;y)}, (1.3)

is called the Hopf-Lax formula for the problem (H, o).

Key words: Hamilton - Jacobi equation, Hopf-type formula, regular, singular, characteris-
tics, strip of differentiability.
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If H = H(p) is only a continuous function, o(x) is a convex and Lipschitz
function, then the Hopf formula of the problem (H, o) is

ult, x) = max{(z, q) — " (q) — tH(q)}, (1.4)

see [1, 4, 5]. Here * denotes the Fenchel conjugate.

It is well-known that both formulas (1.3) and (1.4) are Lipschitz solutions
as well as viscosity solutions of the problem (H, o) where H = H(p) under the
corresponding assumptions stated as above, see [1, 2, 4].

If H = H(t,p) is continuous and o is convex, then a generalization of
formula (1.4) called Hopf-type formula is

ut.a) = maxl(o.a) = ' (0) = [ Hrq)ar). (1.5)

Ones prove that u(t, x) is a locally Lipschitz continuous function satisfying
the initial condition (1.2) in R™, and equation (1.1) at almost all points in the
domain €, i.e. a Lipschitz solution, but in general, it is not a viscosity solution,
see [5, 10]. Recently, in [7] we prove that the formula (1.5) defines a viscosity
solution of the problem for a specific class of Hamiltonians H = H (¢, p).

In this paper we first analyze properties of characteristics of the Cauchy
problem in connection with formula (1.5) where H = H(t,p). We introduce
a classification of characteristic curves at each point of the domain and then
study differential properties of Hopf-type formula u(¢, 2) on these curves. Next,
we present various conditions based on the characteristics so that u(t, x) defined
by (1.5) is continuously differentiable on the strip (0, ¢p) x R™. Finally, we show
that the singularities of the solution (¢, x) may propagate forward from ¢-time
to to the boundary of the domain.

This paper can be considered as a continuation of [6] to the case where
dimension of state variable n is greater than 1, see also [8]. Our method is to
exploit the relationship between Hopf-type formula and characteristics where
the role of the set of maximizers is essential.

We use the following notations. For a positive number T, denote 2 =
(0,T) x R™ Let |.| and (.,.) be the Euclidean norm and the scalar product in
R™, respectively. For a function u : € — R, we denote by D,u the gradient
of u with respect to variable z, i.e., Dyu = (Ug,, ..., Uz, ), and let B'(zg,r) be
the closed ball centered at xg with radius r.
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2 The differentiability of Hopf-type formula and
Characteristics

We now consider the Cauchy problem for Hamilton - Jacobi equation of the
form:

O FH(LD) =0, (1,a) € Q= (0.T) x B, (2.1)

u(0,2) =o(z), x € R", (2.2)

where the Hamiltonian H (¢, p) is of class C([0,T] x R™), and o(x) € C(R") is
a convex function.

Let o* be the Fenchel conjugate of o, i.e., 0*(y) = max,ern{(z,y) — o(x)}.
We denote by D = domo* = {y € R" |6*(y) < +oc} the effective domain of
the convex function o*.

In [10] we assumed a compatible condition for H(t,p) and o(z) as follows.

(Al): For every (to, o) € [0,T) x R™, there exist positive constants r and
N such that

(x,p) — o /HTp)d7'<|max{<xq _ o /qudf}

whenever (t,x) € [0,T) x R™, |t — to| + | — xo| < r and |p| > N.

From now on, we denote

u(t,z) = gr;ax{(x q)— o / H(r,q)dT}. (2.3)
and
o(t,z,q) = (x,q) — o*(q) —/0 H(r,q)dr, (t,x) € Q, ¢ € R". (2.4)

For each (¢, x) € Q, let £(¢, x) be the set of all p € R™ at which the maximum
of the function (¢, z, ) is attained. In virtue of (A1), (¢, z) # 0.

Remark. If o(x) is convex and Lipschitz on R™ then dom ¢* is bounded,
hence condition (A1) is clearly satisfied. Thus (A1) can be considered as a
generalization of the hypotheses used earlier, see [1, 4].

The following theorem is necessary for further presentation.

Theorem 2.1. [10] Assume (A1). Then the function u(t,z) defined by (2.3)
is a locally Lipschitz function satisfying equation (2.1) a.e. in Q and u(0,x) =
o(x), © € R™. Furthermore, u(t,z) is of class C1(V) in some open V C Q if
and only if, for every (t,z) € V, L(t,x) is a singleton.
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Remark 2.2. If £(tg,z9) = {p} is a singleton, then all partial derivatives of
u(t, x) at (to, xo) exist and wuy(to, zo) = p, ut(to, xo) = —H (to,p) see ([11], p.
112). Moreover, we have:

Theorem 2.3. Assume (A1). Let (to, zo) € § such that {(to, zo) is a singleton.
Then the function u(t,x) defined by (2.3) is differentiable at (to, xo).

Proof. By assumption, (tg, zo) = {p}, put pr = —H (to,p). For (h,k) € RxR"
let

o= 1imsup U,(to + h; To + k) - U,(t(), .’130) - pth - <pa k>
(h,k)—(0,0) Vh% 4+ k)2 '

Then there exists a sequence (A, km)m — 0 such that lim,—.o @, = «,

where
—u(to + hany o + ki) — ulto, o) — pehm — (p, km)

®,, =
Vi, + lkml?

For each m € N, we choose p,, € £(to + hm,xo + ki) then

® < @(to + hm,x() + km,pm) - QO(thanpm) _pthm - <pa km>

- Vh2, + [km|?
< _hm(pt + H(Tmapm)) - <pm — D, km>

- VG, & k|2 ’

for some 7, lying between tg and to + hy,; ©(t, @, p) is given by (2.4).

Taking into account the assumption (A1), it is easy to see that, for (h,, km)
small enough, the sequence (p,,)m is bounded, then we can choose a subse-
quence also denoted by (pm)m such that p,, — po as m — oo. Since the
set-valued mapping (t,x) — £(t,z) is upper semicontinuous, see [10], then
po € L(tog, xo), that is po = p.

Now, letting m — oo we have

o= lim @, < lim — @t Hmpm)) = Pm =P k)

m— o0 m— o0 /h12n + |km|2

On the other hand, let

=0.

5= liminf u(to + h,xo + k) —u(to, xo) — pth — (p, k)

(h,k)—(0,0) Vh?+ k]2

We have, for p € £(tg, xo)

u(to + h,xo + k) — u(to, x0) > @(to + h, z0 + k, p) — ¢(to, To, p)
Z _hH(T*ap)+<pa k>a
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where 7* lies between tg and tg + h. Therefore

B> liminf “hizp —HGp)

(h,k)—(0,0) Vh?+ k]2

Thus,
lim u(to + h,xo + k) — u(to, z0) — pth — (p, k)
(h,k)—(0,0) vV h? 4+ |k|?

which shows that u(t, z) is differentiable at (¢, xo).
The proof of the theorem is then complete. O

:O,

Next, we investigate the differentiability of Hopf-type formula w(¢, ) on
the characteristics. First, let us recall the Cauchy method of characteristics
for Problem (2.1) - (2.2). Note that, to use the method of characteristics, the
given data are assumed at least to be of class C'!.

From now on, we thus suppose that H (¢, p) and o(x) are of class C*.

The characteristic differential equations of Problem (2.1) - (2.2) is as follows
t=H,; 0= (H,p)— H; p=0, (2.5)

with initial conditions
z0)=y; v0)=0(); p0)=0,(y); yeR" (2.6)

A solution of the system of differential equations (2.5) - (2.6) is defined by

r=x(ty) =y+ / Hy (7, 0, ())dr,

v =v(t,y) = oly) + / (Hy(r, 7, (1)), 7y (1)) — / H(r.oy)dr, &7

p=pty) = oy(y)

This solution is called a characteristic strip of Problem (2.1) - (2.2).

The first component of solution (2.7) is called a characteristic curve (briefly,
characteristics) emanating from (0, y) i.e. the curve defined by

C:z=z(t,y) =y —|—/0 H,(r,04(y))dr, t €[0,T]. (2.8)

Let (to,xz0) € Q. Denote by £*(tg, z¢) the set of all y € R™ such that there
is a characteristic curve emanating from (0,y) and passing the point (¢g,xg).
We have £(tg, zo) C oy (€*(to,z0)), see [6]. Therefore £*(to, zo) # 0.
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Proposition 2.4. Let (tg, z9) € Q. Then a characteristic curve passing (to, o)
has form

¢
v =aftey) = a0+ [ Hyr.o0,()dr, t€(0.7], (29)
to
for some y € £*(tg, zo).

Proof. Take y € £*(tg,xo) and let C : = = z(t,y) = y + f(f H,(1,04(y))dT be
a characteristic curve emanating from (0, y). Since C goes through (to, z¢) we
have

o =y+ / CHy(r, 0y ()7 (2.10)

Therefore, the equation of C can be written as
to t t
o= [ Hymo,0)ir+ [ Hyro,@)ir = a0+ [ Hyro,4)dr
0 0 to

Conversely, let C; : x = x(t,y) = x0+f:0 H,(r,0,(y))dr where y € £*(to, o)
be some curve passing (tg, 2g). Then we can rewrite C; as:

v a0 / Hy (7, 0y (y)dr + / H,y(7, 0, (y))dr.

On the other hand, let C; defined by (2.8)

r=y+ / H,y (7,0 (y))dr

be a characteristic curve also passing (tg,xo). Besides that, both Cy, Cs are
integral curves of the ODE & = H(t,0,(y)), thus they must coincide. This
proves the proposition. O

Remark 2.5. Suppose that py = 0, (y) € £(to, zo) for some y € £*(tg, zo). Then
y is in the subgradient of convex function ¢* at po, i.e., y € do*(po). Moreover,
from (2.8) and (2.10), we have y = zo — fgﬂ H, (7, po)dT.

Now, let C be a characteristic curve passing (¢, o) that is written as

v = a(ty) = w0 + / Hy(7, 0, (y))dr

We say that the characteristic curve C is of the ¢ype (I) at the point
(to, z0) € Q, if 0y (y) =p € Uto, x0). If oy(y) € 0y (€*(to, x0)) \ £(to, zo) then C
is said to be of type (II) at this point.
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In the sequel, we need an additional condition for the Hamiltonian H =
H{(t,p).
(A2): The Hamiltonian H (¢, p) has one of the following forms:

a) H(t,p) = g(t)h(p) + k(t) for some functions g, h, k where g(t) does not
change its sign for all ¢ € (0, 7).

b) H(t,-) is a convex function for all t € (0, 7).

c) H(t,-) is a concave function for all ¢ € (0, 7).

Remark 2.6. 1. In particular, if H(t,p) = H(p) then the condition (A2) - a) is
obviously satisfied.

2. In [7] we proved that if the assumptions (A1) and (A2) are satisfied, then
the function u(t,z) defined by Hopf-type formula (2.3) is a viscosity solution
of Problem (2.1) - (2.2). Moreover, if o(x) is Lipschitz on R™ then u(t, z) is a
semiconvex function.

We introduce the following lemma which is necessary in the sequel, see [8].

Lemma 2.7. Let v : R™ — R be a convex function and let D = domv C R"™.
Suppose that there exist p, po € D, p # po and y € dv(po) such that

{y,p = po) = v(p) — v(po)-
Then for all z in the straight line segment [p, po] we have
v(2) = (y,2) = (¥, po) + v(po).
Moreover, y € dv(z) for all z € [p, po).

Now some properties of characteristic curves passing a point (¢, o) are
given by the following theorems.

Theorem 2.8. Assume (A1) and (A2). Let (to,x0) € (0,T) x R™, py =
ay(y) € U(to, x0) and let

t
C:z=ux(t) =x0 —|—/ H,(7,po)dr, t € [0,T], (2.11)
to

be a characteristic curve of type (I) at (to,xo). Then for all (t1,z1) € C, 0 <

t1 <to one has po € L(t1,x1). Moreover, £(t1,x1) C £(to, xo).

Proof. Fix (t1,21) € C, 0 <t; <tg. Take an arbitrary element p € R™. Let
U(t,p) = QO(ta xap) - QO(ta xap(J)a (ta x) € Ca te [Oa tO]a (212)

where o(t,z,p) = (x,p) — o*(p) — [ H(r, p)dr.
To prove that pg € £(t1,x1) it suffices to show that n(t1,p) < 0.
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It is obviously that, n(to,p) < 0. We rewrite n(t,p) to obtain

0t p) = (x(t), p — po) — (0" () — 0" (p0)) — / (H(r,p) — H(r,po))dr (2.13)

for (¢t,z) € C.

By Remark 2.5, 2(0) =y € do*(po) and a property of subgradient of convex
function, we have

n(0,p) = (y,p — po) — (6" (p) — o™ (po)) < 0. (2.14)

As a result, we have n(0,p) < 0 and 75(to,p) < 0.
From (2.11)-(2.13) we also have

n/(tap) = <H;D(tap0)ap - p0> - (H(tap) - H(tap()))a te [05 tO]

Next, we consider the following cases:

Case 1. Assume H(t,p) = g(t)h(p) +k(t), and g(t) does not change its sign
in (0, 7). Then

' (t,p) =(g(t)hp (o), p — po) — g(t)(h(p) — h(po))

({hp(Po), p — po) — (A(p) — h(p0))) g(t) = Ag(t),

where A = (hy(po),p — po) — (h(p) — h(po)) is a constant. Therefore, n'(t, p)
does not change its sign on [0, to).

Case 2. Assume H(t,-) is convex. By a property of convex function, we
have

(Hp(t,po)sp — po) < H(t,p) — H(t,po).

Therefore n'(t,p) < 0, for all t € [0, to].

Case 3. Assume H (t,-) is concave. Then —H (t,-) is convex. Arguing as in
Case 2, we have 1/ (t,p) > 0, for all ¢ € [0, to].

Combining the three cases above, we have, for all ¢ € [0,%0], #'(¢,p) does
not change its sign on [0, tg]. Thus,

(i) If (¢, p) = 0,2 € [0, to], then n(t1,p) < n(to,p) < 0.

(i) If n'(t, p) < 0,t € [0, to], then n(t1,p) < n(0,p) < 0.

Consequently, we obtain ¢ (t1, z1,p) < ¢(t1,x1,po). This is true for all p €

R™. As a result, pg € £(t1,x1) for any (t1,21) € C, t1 € [0,t0] and the first
assertion has been proved.

Next, let p ¢ é(fo,xo). Then n(to,p) <0.If (1) holds, i.e. U/(t,p) > 0 then
n(t1,p) < n(to,p) <O0.
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Otherwise, if (ii) holds, i.e. 7'(¢,p) < 0, we have

n(t,p) <n(0,p) = (y,p — po) — (" (p) — 0" (po)), t € [0, o).

Since p # po, then 7(0,p) < 0. Actually, if it is false, i.e. (y,p — po) =
(c*(p) — 0" (po)), then applying Lemma 2.7, we see that [p, p] is contained in
D = {7z € domo* | d5*(z) # 0} and ¢* is not strictly convex on the straight
line segment [p, po]. This is a contradiction, since o(z) is of C*(R™), then it is
essentially strictly convex on D. In particular, o* is stricly convex on [p, pol,
see ([9], Thm. 26.3). This implies n(t1,p) < 0.

Therefore, in any case, if p ¢ £(tg, xg) then n(t1,p) < 0. Thus p ¢ £(t1,x1).
The proof is then complete. O

We have seen that, if the characteristic curve C is of type (I) at (to,xo)
then it is of the type (I) at any point (¢,x) € C, 0 < t < 3. Nevertheless,
for the characteristic curve of type (II), we have the following result which is
somewhat different.

Theorem 2.9. Assume (A1) and (A2). In addition, suppose that H,o are of
class C%. Let C: x = x(t) = z0 + f:ﬂ H,(1,04(y0))dT be a characteristic curve
of type (II) at some (to, xo) € Q. Then there exists 0 € (0,tg) such that C is of
type (1) at (0,x(0)) and C is of type (II) for all point (t,z) € C, t € (0, to].

Proof. Let C: x=x0+ |, :0 H,(7,04(y0))dT be the characteristic curve of type
(IT) at (to, xo) emanating from (0, yo). Then o, (yo) € oy (€*(t0, z0)) \ £(to, zo)-
By the Cauchy method of characteristics, the function defined by Hopf-type
formula u(t, z) coincides with the local C? solution of Problem (2.1) - (2.2), see
[2, 11]. Then there exists t1 € (0,tg) such that u(t, z) is differentiable at any
point (¢, z(t)) € C, uz(t,x) = oy(yo) and £(t,z) = {o,(v0)}, 0 <t <ty. Let

0 = sup{t1 € [0, o) | £(s,2(s)) = {oy(y0)}, 0 <s <t}

Since the multivalued mapping (¢, x) — £(t, z) is upper semicontinuous, we
get that oy (yo) € £(0,z(8)). It is obvious that, 8 < to since oy (yo) ¢ £(to, zo)
and C is of type (I) at (6, x(6)). On the other hand, for ¢t € (6, o], C is of type
(IT) at (t,x(t)) by the definition of § and Theorem 2.8. O

3 Strip of differentiability of Hopf-type formula

In this section we will study the strips of the form V = (0,¢,) x R* C Q so
that the Hopf-type formula u(t, x) is continuously differentiable on them.

Theorem 3.1. Assume (A1) and (A2). Let u(t,x) be the Hopf-type formula
of Problem (2.1) - (2.2) defined by (2.8). Suppose that there exists to € (0,T)
such that the mapping: R™ > y — x(to,y) = y—|—f50 H,(1,04(y))dT is injective.
Then u(t, ) is continuously differentiable in the open strip (0,tp) x R™.
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Proof. Let (t1,21) € (0,t9) x R™ and let C :

t
T =1z + / H, (7, p1)dr,
t1

where p1 = 0y (y1) € £(t1, z1) be the characteristic curve going through (¢1, 1)
defined as in Proposition 2.4.

Let (tg, o) be the intersection point of C and plane At = {(t, z) € R™*! :
x € R"}. Since the mapping y — x(tg,y) is injective and £(to, zo) # 0, thus
0*(to, o) is a singleton. Hence there is a unique characteristic curve passing
(to, zo). This characteristic curve is exactly C. Therefore, we can rewrite C as
follows:

t
T = Tp —|—/ H,(T,po)dr
to

where pg € £(to, zo).

Since {(to, xo) C oy(£*(to, xo)) and £*(tg, zo) is a singleton, so is £(tg, zo).
Consequently, by Theorem 2.8, for all (¢,2) € C, 0 < t < tp, the curve C is of
type (I) at (¢, z) and £(t,z) = {po} particularly, it holds at (¢1,21) and then,
po = p1. Applying Theorem 2.1 we see that u(t, ) is of class C! in (0,%9) x R™.
[l

Note that at some point (tg,xo) €  where u(t, x) is differentiable there
may be more than one characteristic curve goes through, that is £*(¢o, o) may
not be a singleton. Next, we have:

Theorem 3.2. Assume (A1) and (A2). Moreover, let o be Lipschitz on R™.
Take to € (0,T] and suppose that for every point of the plane At = {(to,z) €
R . 2 € R"}, the set {(tg, x) is a singleton. Then the Hopf-type formula
u(t,z) of Problem (2.1) - (2.2) defined by (2.8) is continuously differentiable
in the open strip (0,t0) x R™.

Proof. By assumption, the function o(x) is convex and Lipschitz on R™, then
D =dom o* = {q € R"| 0*(q¢) < +o0} is a bounded (and convex) subset in
R™. We thus have £(¢t,z) C D for all (¢,z) € Q.

Let (t1,21) € (0,tp) x R™. We will check that £(t1,x1) is a singleton.

For each y € R™, we put

Aly) =1 — / " H,(r,p(y))dr,

0

where p(y) € (tg,y) € D. Since the multi-valued function y — £(tg,y) is u.s.c,
see [10], and by the hypothesis, £(to,y) = {p(y)} is a singleton for all y € R™,
we deduce that the single-valued function y — p(y) is continuous. Therefore
the function A : R™ — R", defined by y — A(y) is also continuous on R™.



NGUYEN HOANG 19

Since p(y) is in the bounded set D and H,(t,p) is continuous, there exists
M > 0 such that

|A(y) — 1] < / ' |H, (7, p(y)|dr < M.

t1

Therefore A is a continuous function from the closed ball B’(x1, M) into itself.
By Brouwer theorem, A has a fixed point z¢g € B'(x1, M), i.e., A(zg) = o,
hence

t1
T1 = To —|—/ H, (7, p(xo))dr.
to

In other words, there exists a characteristic curve C of the type (I) at (¢, xo)
described as in Theorem 2.8 passing (¢1,21). Since £(tg, o) is a singleton, so
is £(t1,x1). Applying Theorem 2.1, we see that (¢, x) is continuously differen-
tiable in (0, tp) x R™. O

We note that, the solution u(t, x) is differentiable at (¢, zo) if and only if,
L(to, xo) is a singleton. Thus we have the following corollary.

Corollary 3.3. Assume (A1) and (A2). Moreover, let o be Lipschitz on R™.
Suppose that the Hopf-type formula u(t,x) of Problem (2.1) - (2.2) defined
by (2.3) is differentiable at every point of the plane At = {(to,x) € R+ :
x € R"}, 0 < tg <T. Then u(t,z) is continuously differentiable in the strip
(O, t()) x R™.

Definition 3.4. We call a point (tg, xg) € Q regular for u(t, z) if the function
is differentiable at this point. If u(¢, ) is not differentiable at (¢1, 1) € 2 then
this point is said to be a singular point or singularity of the function.

We study a simple propagation of singularities of viscosity solution u(¢, x)
of the Cauchy problem (2.1) - (2.2) defined by the Hopf-type formula. Under
minimum assumption we show that, if (to,zo) is a singular point of u(t, ),
then there exists another singular one (¢,z) for ¢ > ¢y and z is near to xg.
It is worth noticing that, a comprehensive study of singularities of semicon-
cave/semiconvex functions is presented in [2].

Theorem 3.5. Assume (A1) and (A2). Let (tg,x0) € Q be a singular point
of the function u(t,z) defined by the Hopf-type formula (2.3). Then for each
e > 0 there exists & > 0 such that for any t. > to, |[t« — to| < 0, there exists
Xy € B'(x0,€) such that (t.,z.) is also a singular point.

Proof. We use an idea of the proof of Lemma 6.5.1 in [2] with an appropriate
adjustment. Let (to,2zp) € Q and let ¢ > 0. Under assumption (Al), for all
(t,z) € E = [to, T] x B'(zo, €), there exist positive numbers 7, and Ny, such
that for all (¢, z’) satisfying |t — ¢| 4+ |2’ — x| < r4p then £(¢', 2") C B'(0, Nig).
Hence, we can cover the compact set £ by a finite number balls centered
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at (ti,z;) with radii 7(44),, 4 = 1,..., k. We take the positive number M =
max{Nyz),, © = 1,...,k}, then for all (t,z) € E we get ((t,x) C B'(0,M).
Now we choose § € (0,T — tp] satisfying

0 sup |Hp(t,p)| <€
[t—to|<T—to,|p|<M

and fix a t, > tg so that t, —tg <.

By contradiction, if every point (t.,y) where y € B’(xo, €) is regular, then
U(te,y) = {p(y)} is a singleton. Since the multi-valued function y — £(t.,y)
is w.s.c, then y — p(y) is continuous on B’(xg,¢). Thus, as in the proof of
Theorem 3.2, we see that the function R 3 y — A(y) = 1o — f:f H(7,p(y))dr
is also continuous.

Note that, if y € B'(xg, €) then

.
Ay) — ] < / Hy(rp@ldr <5 swp |Hy(t,p) <.

to [t—to|<T'—to,|p|<M

Therefore A is a continuous function from the closed ball B’(zg, €) into itself.
By Brouwer theorem, A has a fixed point z. € B'(xo,¢), i.e., A(zy) = x4,
hence,

to
To = T —|—/ H, (7, p(x.))dr.
t.

In other words, there exists a characteristic curve C of the type (I) at (t., x4)
described as in Theorem 2.8 passing (to, zo). Since £(t.,x,) is a singleton, so
is £(to, zo). This contradicts to the hypothesis. O

Remark 3.6. If (tp,z9) € Q is a singular point for u(t,x) and € > 0, by the
previous theorem, there exists ¢ > 0 such that for any t € [to,to + J] we can
pick out = = x(t) € B’(xo, €) so that (¢, x) is singular. Put §; =6, t1 = to + 1
and x1 = x(¢1). By induction, we can find (k) and zx = x(tx), tx = tk—1+
so that (tg,xy) is singular. Since ¢y is dependent on (tx,zy) there are two

possibilities:
Z 5k < T or Z 5k Z T
k=1 k=1

In the first case, the singularities of u(¢, x) constructed by this way may not
propagate to the boundary ¢ = T, otherwise the singularities of u(t, z) exist at
some points (T, z,). Nevertheless, if we assume o(x) is Lipschitz on R™ as an
additional condition, then the number § > 0 in the proof of Theorem 3.5 can
be chosen independently of (¢;,x;), i =1,2,...

We have the following:
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Theorem 3.7. Assume (A1) and (A2). Moreover, let o(x) be a Lipschitz
function on R™ and let (tg,xo) be a singular point for the Hopf-type formula
u(t, z) defined by (2.3). Then for each e > 0 there exists 6 > 0 such that for any
t1 € [to,to + 6] we can find x1 € B'(xg,€) such that (t1,x1) is also a singular
point for u(t, x)..

Proof. Since o(x) is convex and Lipschitz, then D = domo™ is bounded. Hence,
D c B'(0, M) for some positive number M. Choose a fixed number § > 0 such
that
5 s Hytp) <e
0<I<T,|p|<M

We argue similarly to the proof of Theorem 3.5. Let (¢g, o) be a singular
point for u(t, x). If there is t, € (to,to + d] such that (¢.,y) is regular for all
y € B'(xo, €) then the mapping

yHMm=m3[mwﬂww

is continuous from B’(xg,€) into itself. Thus, the mapping has a fixed point
2. € B'(xzg,€). This implies that there is a characteristics C of type (I) at
(ts, z.) passing (to,zo) and so (tg, o) is regular. This is a contradiction. [

Corollary 3.8. Assume (A1) and (A2) and let o(x) be a Lipschitz function
on R™. If the Hopf-type formula u(t,x) defined by (2.3) has a singular point
(to, zo) € Q, then for any € > 0 and t > tg, we can find another singular point
(t, ) such that |x — xo| < me, for some m € N. Therefore the singular points
of u(t,z) propagate with respect to t as t tends to T.

Proof. Arguing as in Remark 3.6, we see that for € > 0 and tg < t < T, there
is m € N such that md < ¢ < (m + 1)d, where § > 0 is defined as in Theorm
3.7. Let t; = 46,7 = 0,...,m. After m steps, we can take x,, € B (xy—_1,€)
such that (¢, x,,) is singular and then

|Tm — xo| < |Tm — Tm—1] + -+ |21 — 20| < ML

The proof is thus complete. O
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